
Thermal Conductivity Enhancement by Optical Phono n

Sub-Band Engineering of Nanostructures Based on C and BN

DARPA CONTRACT MDA972-02-C-0044

SCIENTIFIC AND TECHNICAL REPOR T

FINAL REPOR T

Submitted by

NANOTECH INSTITUT E
UNIVERSITY OF TEXAS AT DALLAS (UTD)

DISTRIBUTION STATEMENT A
Approved for Public Releas e

Distribution Unlimite d
Submitted To :

Dr. Leonard J . Buckley
DARPA/DSO Program Manager
Lbuckley@darpa.mil

Jim Troutma n
Contracting office r
jtroutman@darpa.mi l

NanoTech Institute, UTD, MS :BE26, 2601 N . Floyd Rd., Richardson, TX 75083



FINAL REPORT

TABLE OF CONTENT S

Section

	

Page

1 . THEORY, MODELING AND DESIGN 	 5

1 .1. Thermal Conductivity in CNT Bundles

1.1 .1. Introduction	 5

	

1 .1 .2 .

	

Scattering problems	 5

	

1 .1 .3.

	

Thermal conductivity 	 7

1 .1.4. Conclusions	 8

	

1 .1 .5.

	

References	 9

1 .2. Theory of Thermal Conductivity by Polaritons	 10

1.3. Modeling of Phonons and Heat Transfer in Carbon Nanostructures 	 1 1

1 .3 .1 . Phonon dynamics and thermal properties of zigza g
and armchair carbon nanotubes	 1 1

a. Phonon dynamics and thermal properties of zigzag carbo n
nanotubes	 1 1

b. Phonon dynamics and thermal properties of free armchair carbo n
nanotubes	 30

1.3 .2. Carbon heat radiators in polymer surroundings	 52

a. Dynamics of carbon tubes laterally in contac t
with external medium	 53

b. Phonon dynamics of carbon tubes embraced b y
polymer molecule	 57

1.3.3. Sound propagation in molecular nets	 59

2



a. Phonons and Hypersound in Low-dimensiona l
Molecular Nets	 60

b. Sound Boundary Conditions 	 64

c. The Hypersound Frequency Bands in Periodi c
Molecular Nets	 68

d. Summary	 73

1 .3.4. Conclusions	 73

1 .3 .5. References	 75

2. SYNTHESIS OF NANOSTRUCTURE	 76

2 .1 . Synthesis of Zeolite Encapsulated Nanotubes 	 76

2.2. Synthesis of Conjugated Polymer-CNT Complexes 	 84

3. CHARACTERIZATION AND OPTIMIZATION OF PHONO N
THERMAL SPECTRA, CONDUCTIVITY AND SUPERCONDUCTIVITY	 91

3.1. Thermal Conductivity Measurements on Nanocomposites with CNTs 	 91

3.1 .1. Comparative method in PPMS	 91

3.1.2. Tunable thermal conductivity in carbon nanotube paper	 93

a. Experiment	 93

3.1.3. References	 98

3.2. Thermal Conductivity of Carbon Inverse Opals 	 99

3.2 .1. Experiment	 100

3.2.2. Results and Discussion	 100

3.2.3. Conclusion	 106

3.2.4. References	 107

4. SUMMARY AND CONCLUSIONS	 108

4.1 . Summary on Carbon Nanotubes 	 108

4.2. Conclusions on Thermal Conductivity Enhancement	 108

3



5. APPENDICE S

5.1. Theory of Thermal Conductivity by Polariton s

5.2. "Vibrations of single-wall carbon nanotube : lattice models an d

low-frequency dispersion "

5.3. "Simple empirical model for vibrational spectra of single-wal l

carbon nanotubes"

5.4. "Phonon-Polariton Physics: Thermal Conductivity, Phonon-Polariton Lasers

and Phonon Transistors in Nanostructures "

5.5. "Phonons and Thermal Transport in Carbon Nanotube Systems "

4



Chapter 1 : THEORY, MODELING AND DESIGN,

1 .1

	

Thermal Conductivity in CNT Bundle s

1 .1 .1 . Introduction

It is expected that a single-wall carbon nanotube (SWCN) is a very promising object fo r
creation of metamaterials with a high thermal conductivity (TC) [1,2] . The first reason fo r
this expectation is that carbon-based materials, like diamond, have the largest known T C
and, the second reason is a molecular perfection of the SWCNs [1] . However, to the best of
my knowledge, the highest TC ever observed in SWCN bundles at room temperature i s
about 220 W/mK and it is ten times smaller than the TC of the natural diamond [3] . This
highest result has been reported by Hone et al. [4] for a bulk sample of magnetically aligne d
nanotubes. The aligned SWCNs form a bundle in which all tubes have a preferabl e
orientation in some direction . Hone et aL showed that the TC of the aligned SWCNs i s
strongly anisotropic with the largest value in the direction of the alignment .

The enhancement of the TC due to the alignment has been observed also by Zho u
et al. [5] and by Choi et aL [6], but the absolute values of the reported TC have bee n
significantly smaller than in 14] .

There are many theoretical works on TC of the SWCNs. Some computational ones [7-
10] are made by molecular dynamics simulations . The results of these simulations hav e
different values and different T-dependences . They predict mostly very high values of th e
room temperature TC (for example 6000 in [7] .)

Evidently, the main problem of all these works is the small size of the array that ca n
be simulated. There are also some different analytical approaches to the problem [11,12] an d
wonderful reviews [13-15] .

The purpose of this research is to estimate the maximum TC value of aligned nanotube s
taking into account that they do necessarily consist of segments with a finite length . It is wel l
known, that tubes in ropes are not infinitely long, but have brakes, because each method o f
synthesis is able to create separated tubes of only a certain length . It is believed that this
length is of the order of a few microns (see [16] and references therein) . Then, due to Van der
Waals forces, the tubes stick together and create bundles wherein the end of a tube has n o
chance to make a strong chemical bond to the end of a neighboring tube .

There are many experiments that show that tubes inside bundles have free ends . The
idea here is to argue that this effect may be responsible for the relatively low TC a s
compared to crystalline carbon materials .

1 .1 .2. Scattering problem s

Consider a bundle of nanotubes perfectly aligned ; each segment has a finite length
with an average value L. The nanotubes are organized in an ideal triangular lattice with six
nearest neighbors [17] . The cross section in a plane perpendicular to the nanotubes is show n
in Fig .1.1(a). The cuts in each line of the nanotubes have random positions . Thus, on the
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length of each segment there are in average six cuts of its nearest neighbors . A homogeneou s
interaction between infinite tubes does not cause the loss of the phonon momentum .
However, a phonon flux has to overcome the openings between the segments at the
termination points of each nanotube segment. Assume that these openings are so large that a
jump of flux occurs with an assistance of all six neighboring rows of the tubes as shown in
Fig.1 .I(b). A slightly different mechanism of momentum scattering appears in a given
nanotube ("0") if one of the neighboring nanotubes has a termination point as shown i n
Fig.1 .1(c).

0

	

x

Fig . 1 .1 : (a) The cross-section of the bundle that shown a nanotube "0" and its nearest neighbors .
(b) The first scattering problem - cross-section by the plane of nanotubes 2-0-5 . The wave incident

from 0_ reflects backward and transmits through the opening into 0+ with simultaneou s
excitation of the waves in all six neighboring tubes.

(c) The second scattering problem . The wave incident from O . is scattered by the cut in tube 2 .
It reflects backward, transmits into 0+ and excites waves in tube 2 +.

The propagation of heat flux Q between the scattering points was assumed to b e
ballistic because the goal is to get a maximum estimate of the TC . Quick phonon exchange a t
the scattering points leads to a thermalisation of symmetrical parts of the distributio n
functions of phonons with temperatures that are determined by values of effective therma l
resistances between scattering points. It should be noted that calculations could not be
applied directly to multiwall carbon nanotubes .

Thus, there are two different scattering problems . Since the bottle neck of problem 1 is
a jump through the opening, let us assume strong interaction between tubes as compared t o
the phonon energy. In this way, we can achieve the upper estimate of TC. In all cases, the
scattering is determined by three coefficients: reflection D, transmission C and penetration to
a neighboring nanotube A . In this case, the results for transmission and reflection are
independent of the spectrum of the phonon mode and determined by the geometry of th e
problem only .

For the first scattering problem 10 1 2 = 36/49, ICI 2 = IAI 2 = 1/49 and for the secon d
problem 1011 2= IC 1 1 2= IA,I2= 1/4.

(a)
(b)
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1 .1 .3 . Thermal Conductivity

In the approximation of elastic scattering, the heat flux Q along each row of the aligne d
nanotube is conserved because the waves generated in neighboring nanotubes due t o
scattering have zero total momentum. This leads to a conservation of Q along the row
because in the theory of phonon thermal conductivity any relaxation of Q is the result o f
momentum loss . It is important, however, that at the points of scattering of both type s
considered above, the numbers of phonons in each mode changes . Therefore the symmetri c
parts of the distribution functions in these points can be considered as in equilibrium wit h
different temperatures for each point. Assume that the propagation is ballistic between th e
scattering points of both types .

In average every section of a nanotube can be divided into seven ballistic regions suc h
that each boundary of the region corresponds to a cut in one of the six neighboring rows o f
the nanotubes. The part of one row is shown in Fig. 1 .2. The energy flux is the same along th e
row. Since the scattering is different, the temperature intervals between neighborin g
boundaries are also different. To calculate the TC, the total temperature difference throug h
all the nanotube at a given flux Q was found .

)12 ':3 :4' 5:6 :0;
Fig. 1 .2: Part of the row of nanotubes with two cuts . Dotted lines in the nanotubes correspond t o

cuts of the neighboring nanotubes. The regions between them are considered to be ballistic .

Consider one region i of a nanotube and assume that each end of the region perfectl y
matches a thermal bath . The temperature difference of the left and right boundaries of th e
region is ti. Thermal flux produced in this region is Q=G(T)t ; , where the function G(T) i s
called thermal conductance. It can be written in the form 1181 :

k 2 T

	

2 x 2 e x
CbCG(T) =	 b

h

	

f
(e x1

	

-02
where z = hw/k BT and the sum is over all monotonously increasing segments of spectru m
ws(k), z, and z2 are the lower and upper boundaries of such segments . Here k B and h are th e
Boltzmann and the Plank constants respectively . To calculate the above integrals one shoul d
know the vibration spectra of nanotubes . They have been calculated previously withi n
different frameworks such as an empirical force constant model 117,191 . The function G(T)
calculated by Yu . Gartstein 1201 is used in this experiment. Finally, an equation for TC was
obtained,
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k = NLG(T)B

	

(1.2)

where N is the number of tubes in the bundle per square meter (assuming triangular lattice ,
it is easy to get N=4 x 10" m -2 for (10,10) nanotubes), L is the length of a nanotube ,

B =	 6	 +	 1	 2 - 6 C, 12 - C 12 =1/0.0976.
1- D, 1 2

	

1- D 1

Since the interaction is assumed to be strong, coefficients in B are independent of th e
frequency. As a result the TC can be expressed in terms of G(T) . Thus, the final result is

k = 0.0976G(T)LN

	

(1 .3)

Fig. 1 .3 shows the results at L=1, 0.87, 0 .71,tm together with the results by Hone et al .
[4) . One can see that the theory reflects well enough both the magnitude and the temperature
behavior. In fact, the only parameter here is the average length of a nanotube. The deviation
at high temperatures is probably related to the Umklapp processes .

300

25 0

50

0

	

50 100 150 200 250 300
Temperature, K

Fig. 1 .3 : Thermal conductivity as calculated theoretically for the (10,10) tube with L =0.7µm (dashed
line), 0 .87µm (solid) and 1 .0µm (dotted) . The experimental data of X41 are shown by diamonds .

1 .1 .4. Conclusion s

In this paper, the maximum estimate of the TC of perfectly aligned nanotubes, takin g
into account the scattering of phonons by the terminal points of the nanotubes, wa s
presented. This estimate gives a quantitatively correct description of the therma l
conductivity of aligned nanotubes as obtained experimentally by Hone et al . [41 assuming
that the length of segments is of the order of 1µm . It follows from these results that the way
to make the thermal conductivity of the aligned nanotubes at room temperature larger tha n
300 W/m K is to increase their lengths. Of course, the TC will not increase indefinitely wit h
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length (L), as it follows from (1 .3), because, sooner or later, the mean free path, due to othe r
scattering processes, will be smaller than L/7 . However, some additional gain may b e
achieved with increasing L .

The paper is published in cond-mat/0405499 and sent to Phys . Rev. B
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1 .2

	

Theory of Thermal Conductivity by Polariton s

See APPENDIX 5 .1 and 5.4

1.3 Modeling of Phonons and Heat Transfer in Carbon Nanostructure s

1.3.1. Phonon dynamics and thermal properties of zigzag and armchair carbon nanotubes

Report-2b: "Strategies to Increase Thermal Conductivity . Enhancement by Optica l
Phonon Sub-Bands Engineering in 3-D Nanostructures Based on C an d

BN Nanotubes "

1.3.1a. Phonon dynamics and thermal properties of zigzag carbon nanotubes

Content

I. Introductio n

II. Phonon dynamics in a zigzag carbon nanotub e

III. Generalized equation of thermal conductivity in a single nanotub e

IV. Thermodynamics and statistics for a carbon nanotube

V. Summary

VI. References

VII. Attachment - Short investigation pla n
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I .

	

Introduction

This report presents the second stage of investigation of phonon fluxes in carbon an d
BN nanostructures in the framework of the tasks for "Strategies to Increase Thermal
Conductivity. Enhancement by Optical Phonon Sub-Bands Engineering in 3-D Nanostructure s
Based on C and BN Nanotubes " .

Here, the dynamics of the heat transfer problem for closed carbon nets (planned poin t
lc), zigzag tubes (point 2c) and macroscopic manifestations (point 3c) are presented . Phonon
eigenstates, density of states and vibration amplitude distribution for each phonon along th e
molecular fragment are considered for two main tubulene geometries : zigzag and armchair.

The idea of the PQDM approach proposed in the previous report is to use a discrete
microscopic model for phonon dynamics of relatively small molecular fragment s
approximately of phonon mean free path sizes . The dynamics of such a cluster may b e
described classically in Born approach [1, 21 and all the important data may be obtained :
eigenfrequences, density of states and phonon amplitude distribution inside the molecula r
fragment during its lifetime. Neighboring fragments of a molecular net are in a n
uninterrupted process of exchange by phonons. Due to the weak fragment-surroundin g
medium interaction, the process may be described by Fermi's "golden rule" which
determines the value of the transfer rate . This quantum characteristic is a transport proces s
consideration that enables the introduction of a microscopic thermal conductivity coefficien t
that depends on the temperature difference between opposite sides of the fragment in contact
with the baths .

An averaged classical picture of phonon energy (heat) transport and temperature
distribution in the big 2D carbon nets, both open (graphene) and closed (tubulenes), an d
other kinetic and statistical phenomena may be obtained in rough space scale . The transition
to rough scale leads to the generalized phonon kinetics equation describing heat propagatio n
in 2D molecular nets. Results obtained in the previous report for flat nets have important
meaning for comparison with that for closed nets . Considering here phonon dynamics an d
statistics in tubes with zero-chirality and of zigzag geometry, comparison with data for fla t
nets will be made.

The general picture of connected subjects for the problem of phonon propagation i n
molecular nets is shown in Fig.l .
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Fig.l . General picture of connected subjects for the problem of phonon propagation in molecular nets .

In Fig.1, fundamental data such as elastic modulus E, G and elastic coefficients k, k '

describing forces when shifts are directed along the main axes of the bond potential ellipsoi d
are presented . U(r) is the site potential energy of an atom which has to be determined i n
other approaches ; the same for thermal expansion coefficient 13, pressure coefficient y(T) ,
characteristic frequency (or phonon band width) temperature dependence coo(T) .

II.

	

Phonon dynamics in a zigzag carbon nanotube

Linear approximation in phonon dynamics is based on the supposition that smal l
atomic vibrations have harmonic character at least in the case of not too high temperatures .
It means that a potential equienergetical surface in the vicinity of atomic equilibriu m
positions has an ellipsoidal form . Classical motion of atoms near their equilibrium points i s
described by elastic constants k that characterizes atom-atom bonds in Born approach I1] .
For atomic shifts perpendicular to bond we will use nonzero elastic constant k' << k coming
out the framework of linear approximation .

mpirrd
Fourie law

Sound macroscopic
mermai conducti v

equationa
T a°A t

at _2V T
propagatio n

Generalized
phonon
conductivity
equation
2-- a=e n
at

Vibration energy propagation
in open and closed 2D carbo n

stru res
Theoretical approaches to the problem

	

Phonon Quantum

Green-Kubo

	

Kinetic theory Ab-initio potential Discrete Mode l

formalism

	

ax 70= aproaches

	

P
2 _. ldte <q(O)-q(t)> a tr
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The symmetry of carbon structures dictates three main vibration types (radial p-
mode, tangential cp-mode and axial z-mode) shown in Fig .3. It should be marked tha t
principal difference between vibration branches originates from bonds direction relative the
direction of symmetry axes connected with given freedom's degree . This difference manifest s
itself in phonon band structure for tangential and axial branches in pure zero-chirality case .
In presence of helicity the difference vanishes .

Fig .2 . Fragment of hexagonal lattice . Shaded
is the conventional elementary cel l

containing four atoms . Two types of bonds
are presented by different colors .
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In Fig.4, the case when (p-mode and axial z-mode have approximately equa l
orientation shifts relative to both red and blue bonds inside a chosen elementary cell i s

presented .

Systems of dynamical equations for all three branches of vibrations are calculate d
taking into account that the motion of each atom is three-dimensional . The zero -
approximation approach supposes that radial p-mode, tangential (p-mode and axial z-mod e
should be considered independently .

Consider a zigzag tube (n,0) produced from the fragment shown in Fig.2 by rolling
around vertical direction without any shift . In this case, each of the tube fragments i s
connected with the same fragment . Therefore, contrary to the case of flat fragment s
connecting external media (Report-lb) all atomic positions and their bonds are describe d
similarly by the same dynamical equations . The difference exists with different vibratio n
types or branches only .

For shifts directed normal to the tube surface, the equation is the followin g

€ m P ; = - k '( 3 P ;- p 1-Pi2-Pi3) ,
(1 )

where il , i2, i3 are indexes for atom i neighbors . Atomic coordinates are not important here .
The united atomic number i is defined using its position in the row and column of initial fla t
fragment creating the tube . For tangential atomic shifts having in view that atom spac e
coordinates on the tube surface .rpR , where R is the tube radius and co is the azimuth angle.
The zigzag case with the absence of chirality is described by the system :

{mzl =-0 .75k(2x1-x11 -x12)-k'(x1-x,3 )

where coefficient 0 .25 characterizes two weak bonds for this vibration . For axial atomic
shifts we have

Fig.4. Fragment of armchair tubulene (10,5) with non-zero
chirality created from a graphene sheet {14,10} by rolling u p
around the armchair direction . Picked out is the conventional
elementary cell containing four atoms . Two types of bond s
are marked by different colors .

(2)
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(3)
Matrix structure of all equations (1-3) corresponding zigzag (n,0) case is shown in Fig.5 .

Fig. 5 shows a zigzag tubulene matrix and vibration amplitudes . Atomic coordinates

become important when mode amplitude distribution is presented in the space.
The square of vibration mode s=1 of any type is shown in Fig.6. There are

considerable differences in amplitude distribution over the tube surface relative open carbon

net. The differences are caused by a change in the topology of the system. The difference
between mode frequencies and density of states at the same number of state exists but it is
not essential.

The calculations given are for eigenvectors ICs; 12 which is a well known standing wave
picture with corresponding number of knot's lines depending on the number of state s.
Increasing the number of states leads to lateral (parallel to z-axes) divided by transversal
(circular) knot's lines the tube's surface .

1 5



Fig.6b . p-branch amplitude distribution
along zigzag tubulene created from a

graphene sheet {5,5} by rolling u p
around marked direction . 5th state .

Transversal knot's line is degenerated .

1 r
Fig.6a. Calculated p-branch amplitude distributio n
along zigzag tubulene created from a graphene sheet
{8,10} by rolling up around marked direction .
Ground state .
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Fig.6c. p-branch square amplitude distribution along zigzag tubulene created from a graphene sheet
{14,5) by rolling up around marked direction . Four transversal knot's lines correspond to 5th-state .

The Low frequency ground state is shown in Fig .6a. The picture is typical for mean
amplitudes distribution : maximal amplitudes situates near the tube's middle . The Fig .6b
illustrates amplitude distribution for 5 th (or r-4 th) state where twice degenerated line of knot s
crossing two non-degenerated lateral lines of knots .

Increasing the tube's length leads to a considerable change in the picture o f
vibrations . The same 5th (or r-4 t ) state presented in Fig .6c has another combination o f
knot's lines. The transversal line vanishes and two additional lateral lines of knots arise .

The mean vibration amplitudes Al averaged on the state populations ns decrease fro m
the lateral ends to the middle axes of the nanobridge .

Fig.6d. Calculated mean square amplitude distribution along
zigzag tubulene created from a graphene sheet {15,5) by
rolling up around marked direction . T=0.03 eV. Circular
arrows show rolling up of the structure .
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More free lateral atoms have bigger vibration amplitudes .

A ;_

	

I C sjI2n cT

s , 6

	

(4)

where nw is the population of s,6 state, j numbers atoms situated on the tube surface and Cs,
is the s-state probability amplitude at j-position of the net . Mean square amplitude s
calculated for temperature T=0 .03eV by expression (4) are shown in Fig .6d. The averaging
was made here on all phonon branches 6 One can see that in contrary with flat carbon
terminated nets with free edge atoms the closed structure is harder near the edges and
greatest amplitudes of vibrations take place in the middle of the tube . The greater are
temperatures the lesser is this effect of hard tube ends. Tube ends are frozen at lo w
temperatures .

The density of states (DOS) for a zigzag tubulene spectrum is shown in Fig 7a .

The density of states may be approximately defined by the expression :

1
g(ws,) - - -

(5)
that transfers to an exact one if the number of degrees of freedom becomes big enough .
More correctly, the density of states function may be calculated providing preliminary stat e
grouping and density determination inside the each group . DOS calculation were made wit h
preliminary state grouping using dividing the whole frequency band interval int o
h=lnt[35r/50] sub-intervals (or near this value) where the number of eigenmodes wa s
counted. The integer numbers are present on vertical axes in figures 7b, Sb and 9b .
Frequency spectrum and DOS function in case of zero chirality are presented in Fig 7-9 . The
figures 7a, 7b were obtained by numerical calculation in system (1) described by the matri x
of eigenvalues problem shown in Fig.5a

Fig 7a. Radial mode spectrum of zigzag tubulene
created from a graphene sheet {5,151 by rolling u p
around z-axes. The unity of frequency is co o

0 .05

0 .04

0 .03

0 .02

0 .0 1

0

CO -Cl)
sv
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rad mode

1)1

	

H
iuEi il
0 0 .01 0 .02 0 .03 0 .04 0 .05

Fig.7b Radial mode DOS function for Fig .7b
system. h=lnt[35r/50] .

The comparison of these results obtained for the tube radial mode spectrum and DO S
function for a graphene fragment of the same number of atoms and zigzag orientation show s
the absence of any significant differences . Thus, the process of sheet rolling up into a tub e
has no influence on spectrum and density of states in this type of vibration case . But
vibration amplitudes distribution (Fig .6) differs from that for graphene (see Report-lb ,
Fig.3, Fig.9a, Fig.9b) where the mean vibration amplitudes of the sheet free edges wer e
bigger than that in the middle (Fig .9a). One can see that the tube has hard edges and sof t
middle part (Fig . 6a, 6d)

Calculated by system (2), th e
frequency spectrum and DOS function for
azimuth mode are shown in Fig. 8a, 8b . Fig 8c
presents the result of numerical calculatio n
for azimuth mode existing in graphene shee t
{15,5}, consisting 190 atoms .

phi mode

0 .175

0 .15

0 .125

0 . 1

0 .075

0 .05

0 .02 5

0

Fig 8a. Azimutb mode spectrum of zigzag tubulene
created from a graphene sheet {5,15} by rolling u p

around z-axes. The unity of frequency is coo .

phi mode

J

	

I

O

	

0 .05

	

O .1

	

o .1 5

Fig.8b Azimuthal mode DOS function (arbitrar y
units) for tubulene fragment created from a
graphene sheet {5,15} by rolling around z-axes .
h=Int[35r/50] .
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0 0 .05

	

0 .1

	

0 .1E

Fig.8c Azimuthal mode DOS function
(arbitrary units) for graphene sheet {5,15 }
h=lnt[35r/50] .

The comparison of results in Fig.8b obtained for tube with azimuthal mode spectru m
and DOS function for graphene fragment of the same number of atoms Fig .8c shows some
differences. Thre tube's number of bands is twice less than that of a plane sheet . The reaso n
lies in the double degeneration of athimuthal motion around the tube axes . For this type of
vibrations, the process of rolling a sheet into a tube has an influence on the spectrum an d
density of states. The tube creating process is accompanied by subbands uniting due to th e

fact that rotational symmetry arises .
Vibration amplitudes distribution or spac e
density distribution are similar for all types o f
phonons as shown in Fig 6.

0 .175

0 .15

0 .12 5

0 . 1

0 .075

0 .05

0 .025

0

Fig 9a. Axial mode spectrum of zigzag tubulene
created from a graphene sheet {5,15} by rolling up
around z-axes. The unity of frequency is wo .

Calculated from the system of equations (3), the frequency spectrum for z-branch modes is
shown in Fig. 9a. The arising of a narrow subband near 0 .125(90 that plays the role of a
characteristic "mark" for the changed topology of the system is of great interest . The density
of states function for h=lnt[35r/50] is shown in figure 9b . Superposition of two DOS
functions presented in Fig . 9c gives an opportunity to immediately compare the spectra o f
open and closed graphene structures . In the case of z-type vibrations for zigzag tubulene, one
can say that the only consequence is the arising of a narrow subband containing 2*n levels i n
the middle of the gap. This is because the new topology permits circular standing waves fo r
z-type vibrations that were forbidden before in the plane structure .

20



There exist different opinions as to the spectrum transformation when a graphit e
sheet is rolled up into a tube [3, 4] . These results show that only some of the graphen e
spectrum characteristics change significantly (case cp-mode and z-mode) . As to the low -
frequency p-branch, one can talk about spectra similarity .

III .

	

Generalized equation of thermal conductivity in a single nanotube

0

	

0 .025 0 .05 0 .075 0 .1 0 .125 0 .15 0 .175

Fig 9b . Axial mode DOS function (arbitrary units) for
tubulene fragment created from a graphene sheet {5,15 }
by rolling around z-axes . Horizontal axes, frequency in wo

10

8

6

4

2

O

Fig.10a. Heat transistor (4-polar contact)
on a flat carbon structure connecting fou r
baths at different temperatures Tl , T„ , Td
and Tr.

c
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Fig.IOb. Phonon jumps over a carbon armchair
structure (arrows). One-dimensional phonon
dynamics in tubulenes .

The PQDM analysis, proposed in Report-lb, considered heat processes from "firs t
principles" using microscopic characteristic on a quantum level including phonon jump
probability, phonon-phonon interaction, calculated spectrum and amplitudes distributio n
along the structure and macroscopic kinetic approach operating by length of phonon
decoherence Iph or phonon mean free path. The time of the phonon state establishing in area
Iph X Iph is much less than the phonon lifetime. The latter is determined by phonon-phono n
scattering and may lay in interval (104-10 -7)s [???] . This supposition allows one to conside r
propagation of phonons as a sequence of jumps from one fragment to another with relativel y
long life on each one. Figures 10a, 10 b
illustrate 2D phonon propagation by jump s
between mean free path-sized areas .
Neighboring areas play a role of lead s
having some fixed temperatures. Taking
into account that phonon scatterin g
processes are weak ones we have obtaine d
generalized equation of phonon
dynamics.(Report-lb, paperzd-a.doc) .

Temperature distribution along the tub e

TI

Tr

0

	

L z
Fig.11 . One dimensional phonon dynamics . Exact temperature

distribution along the tube given by (7) . T1 Tr .are end
temperatures, L is the tube length . End points come together al l

modal (partial) temperatures for each sa .

The phonon mean free path Ip h decreases with increasing of temperature . Evaluations mad e
in different sources give interval from hundred Angstroms to several micrometers at roo m
temperatures. In any case azimuthal phonon motion may be considered as ballistic one an d

22



jumps or diffusion in tubes may occur only in axial direction . In relation to phonon
propagation nanotubes embody an ideal one-dimensional system. In stationary case it is ease
to write the exact solution of the 1D variant of equation (6) .

7(Z)=-

	

msso- 	

ir(1+

	

L

	

)

	

(7)Ii( X (N)- ( ))z

Here L is tube's length, z is axial coordinate along the tube, n i n, are population number s
ns, taken at left and right temperatures of both tube ends T, ,T, . Indeed on the macroscopic
level local populations n i n, obeys equilibrium Planck law. The approximate behavior o f
temperature distribution is shown in Fig .11 . The bundle of partial modal temperature s
comes together in end points. With increasing temperature, all modal dependences becom e
equal. The difference may be essential at low temperatures .

Thermal conductivity and phonon mean free pat h

Thermal conductivity was calculated here in PQDM approach for tubes of zigza g
geometry by expressio n

~,
l

	

21x1
h G 2 G 2 ~2

	

N(ws~_ )(N((0sa)+l)
(ph)

	

2

	

is
1G

	

s6g( so-)

	

2

	

2
T s,o

	

GIs ' +1G, I

(8)

where Iph is phonon mean free path, square modulus reflect connections of end atoms of th e
tube fragment with the rest part of the tube .

Gi s =EG. C.
ii

(9)
Left and right end atoms numbered i1 and it were taken into account with its bond s
orientations. Formula (8) is a partial case of obtained in Report-lb expression (16) fo r
thermal conductivity when left and right DOS functions coincides with own density of state s
g,g,.

The Iph is playing here in some sense the double role . From one side it dictates th e
length of tube fragment where phonon states occur in ballistic regime. For a zigzag tub e
made from a graphene sheet {n,m} we have Ip h =2ma, where a is the bond length. In
accordance with PQDM approach Iph coincides with the length of calculated fragment with
phonon standing waves inside. In contrary, DOS function g(a.ta) describes the left (=right)

23



medium. From the other side Iph depends on phonon-phonon collisions that in own turn
depend on the temperature .

It is worth to evaluate temperature dependence of lp h. General expression for phono n
mean free path is given by the surface density of phonons S/N.

.S = V id `ph

	

l x	 ld
`ph

	

N

	

N

	

ph <N>
(10)

< N >= f n ( w ) g (co )dco
0

(11)
where S is the tube surface where phonons propagate, Id is the tube circle length, A is the
phonon band width and <N> is mean number of phonons . Taking into account that <N>ocT
we have

1

	

1

ph T
(12)

Implicitly !ph is contained in upper limit of summation in (8), in 1G/sr and in g(ri,1) . The size
dependence for zigzag tubes of given diameter and at given temperature was calculated b y
(8). The Fig .12 presents typical picture of linear k increasing vs phonon mean free path .

ti
ph

(13)
Relations (13), (14) contain an explanation for the well-known experimental fact of therma l

10

C
sa

V
c
u 4
cv
E

0

o

	

l0

	

20

	

2

	

3 0

(L pn12a)
Fig.12. One dimensional phonon dynamics . Thermal conductivity size dependence for axia l
branch of vibrations . Lph is phonon mean free path, a is carbon bond length. For radial and
athimuthal branches dependence has the same character .

4 0
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conductivity temperature damping at high temperatures by 1/T law . It is of interest also that
the PQDM gives a simple opportunity to connect heat propagation with the definition o f
phonon mean free path .

The result of thermal conductivity numerical calculations for radial, azimuthal an d
axial phonon branches (a=1,2,3) is presented in Fig .13. It is easy to see that the sum on all a
will be very close to curve 3 connecting with radial p-band . Unity X determined from (8) and
(16) from Report-lb is measured in Wm/K

2TraGo k

hcoo
(13)

where a=1 .2 Angstrom is unity of length, k is Boltzmann constant, wo is accepted her e
phonon energy unity and Go is the constant of phonon-phonon interaction . Evaluations [4-8 1
give for characteristic phonon energy interval woe [0 .8-1.2]eV.

It should be marked that weak temperature dependence has also the structur e
constant (bond length a) of the system . Thermal expansion of single walled nanotubes wa s
investigated in [9-121 but the result obtained there for radial expansion is not a reliable one .
Elastic constants and the constant of phonon-phonon interaction Go depend on th e
temperature too .

0 0 .08

	

0 . 10 .060 .040 .02

T/c o
Fig.13. Thermal conductivity temperature dependence . Zigzag NT. Curve 1 corresponds to z-
branch contribution, curve 2 to cp-branch and p-branch contribution is presented by curve 3 .
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The conclusion that radial mode contribution into heat transfer is dominating i n
temperature interval under consideration is based on the supposition that phonon-phono n
interaction constant Go (see (8), (9), (13)) participating in end atoms constants Gil does not
depend on the phonon type (p, cp or z) . Then due to big density of states in narrow low -
frequency p-band comparatively with that for 9- and z-vibrations essential prevail of p -
vibrations arises. So at actual temperatures p-branch of phonons determines hea t
propagation through single-walled nanotube . One should wait the same effect and fo r
armchair geometry too. The problem of phonon-phonon constants for different vibratio n
types is open now and should be investigated in detail in following study .

IV.

	

Thermodynamics and statistics of zigzag nanotubes

Static thermodynamic characteristics of non-helical zigzag nanotubes of differen t
sizes have been calculated . If the system exists in equilibrium state, the atomic heat
capacitance C(T) and entropy S(T) are as follows,

C(7) w1

	

a1V(wS6)-

	

cv2 N w N

	

+l ,
r s,6

S~ aT

	

rT2

	

s~ (S6 (wS~) )
S,6

(14)
where r=2n(m+1) is the number of atoms in a zigzag tube of length 2ma and radius
a/(2sin(Kin)) .

S(T) = C(T) =1 dT w6N(
T

	

r

	

wsa)(N(ws6)+l),
jT'3 S 6

(15)
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0 .5

0

0 . 1
T/ too

Fig.14. Heat capacitance vs temperature dependence for zigzag nanotube. Dulong-Petit law and
W.Nernst theorem . woE(0.8, 1 .2)eV .

0 0 .05 0 .15 0 . 2

The calculated temperature dependence for heat capacitance is shown in Fig .14. The curve
illustrates the third thermodynamical law (W .Nernst theorem) at low temperatures an d
Dulong-Petit law at high temperatures (T>0 .lwo). The entropy behavior has simila r
character at low temperatures and shows logarithmic growth at high temperatures .

V.

	

Summary

A complex approach PQDM was applied to describe dynamics, kinetics and statistic s
of phonons in carbon nanotubes with zero-chirality .

Atom vibration dynamics was considered for carbon nanotubes of zigzag geometry in
comparison with the results obtained for graphene sheets . Vibrational eigenmodes, density o f
states and amplitude distribution for tube fragments of the length up to 40 hexagons wer e
calculated in linear approximation for three types of vibration : athimuthal or tangential p -
mode, radial p-mode and longitudinal z-mode .

Thermal fluxes and thermal conductivity were considered in PQDM . Temperature
dependences were obtained . The mechanism of heat conductivity temperature damping wa s
analyzed.
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The exact solution of generalized thermal conductivity equation was obtained fo r
nanotubes. Temperature distribution along the tube was derived analytically .

Size dependences were considered for thermal conductivity. It was shown the linear
increasing of heat conductivity with the growth of the phonon mean free path .

Statistical properties were investigated . Heat capacitance and the entropy of carbo n
linear tubes were calculated as the function of temperature .
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d) Carbon tubes of various radii . Short fragments. Free and contacting with leads .
e) BN- flat structures . Free and contacting .
f) BN-tubes of various radii. Short fragments . Free and contacting with lead s
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Macroscopic manifestations of phonon propagation in carbon nets .
a) Generalized 2D and 3D equation of thermal conductivity in carbon nets .
b) Boundary problem and temperature distribution in macroscopic carbon nets .
c) Boundary problem for heat conductivity in carbon and BN tubulenes an d

temperature distribution along tubulene bridge . .
g) Carbon tubes of various radii . Short fragments. Free and contacting with leads .

4 Phonon-phonon effects in charge and heat transport .
a. Spectrum modification due to phonon-phonon processes ;
b. Non-linear transport through flat carbon structures ;
c. Non-linear transport along carbon tubulenes ;

5 Thermodynamics and statistics of closed and open carbon net s
a. Statistical sum and entropy of carbon nets (graphene and tubulene) .
b. Heat capacitance of graphene and tubulene structure s

6 Heat-transistor effects .
a. Three pole systems ;
b. Four pole systems ;

7 Electron-phonon effects in charge and heat transport .
a. Transport through linear carbon chains connecting electrodes (analytical approach) .

Dragging in linear bridges.
b. United transport in graphene molecules of various kinds, free and contacting wit h

leads . Calculation.
c. Electron-vibron interaction in carbon tubes of various radii . Short fragments . Free

and contacting with leads.
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1 .3.lb. Phonon dynamics and thermal properties of free armchair carbon nanotubes

Report-3a: "Strategies to Increase Thermal Conductivity. Enhancement by Optical
Phonon Sub-Bands Engineering in 3-D Nanostructures Based on C and BN
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Introductio n

The content of Report-3a presents the third stage of the investigation of phonon fluxes
in carbon and BN nanostructures in the framework of the tasks for "Strategies to Increase
Thermal Conductivity. Enhancement by Optical Phonon Sub-Bands Engineering in 3- D
Nanostructures Based on C and BN Nanotubes" .

Here, dynamics (planned point lc, see attachment), heat transfer problem for close d
carbon nets - armchair tubes (point 2c) and macroscopic manifestations (point 3c) ar e

presented. Two main tubulene geometries : zigzag and armchair are compared with respect
to phonon eigenstates, density of states, vibration amplitude distribution and therma l

conductivity .
The idea of the PQDM approach proposed before is to use a discrete microscopi c

model for phonon dynamics of relatively small molecular fragments approximately of
phonon mean free path (MFP) sizes .

The dynamics of such a cluster may be described classically in Born approach [I, 2 1
and all the important data may be obtained : eigenfrequences, density of states and phono n
amplitude distribution inside the molecular fragment during its lifetime . Neighboring part s
of the nanotube are in an uninterrupted process of exchange by phonons . Due to the weak
fragment-surrounding medium interaction, the process may be described by Fermi's "golde n
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Fig.2.1 . Structure of PQDM approach . I-II small scale processes, III-V rough scale processes . Lph is
phonon mean free path . I stage, classical dynamics, atomic scale ; II stage, phonon jumps between

nanotube areas . III stage, transition to averaging, The notion of statistical temperature erases at IV stage .
V stage _ macrosconic thermodynamics and kinetics .



rule" which determines the value of the transfer rate . This quantum characteristic is a
transport processes consideration that enables the introduction of a microscopic therma l
conductivity coefficient that depends on the temperature difference between opposite sides o f
the fragment in contact with the baths . An averaged classical picture of phonon energy (heat)
transport and temperature distribution along pulled carbon nanotubes and other kinetic an d
statistical phenomena may be obtained in rough space scale . The rough scale leads to th e
generalized phonon kinetics equation describing heat propagation in 2D molecular nets .

The general scheme of the developed PQDM approach is shown in Fig .1.1. The tiny
scale stages (I-II) involve classical dynamics on the atomic level and weak phonon-phono n
transformations and jumps . The parameters of this model are the elastic constants
determined from atom-atom quantum-mechanical potentials, the geometry and symmetry o f
the system, the lattice constants, and the phonon-phonon interaction constant . At this leve l
processes are ballistic . The discrete system of contacting separate atoms vibrates an d
the complicate motion is represented as the superposition of modes that group into thre e
branches. Each mode (=degree of freedom=standing wave) is described by th e
eigenfrequency and distribution of atomic amplitudes inside the corresponding standin g
wave. On the second stage, phonon standing waves jump between neighboring areas alon g
the nanotube . Due to the actual "compactification" of circular degrees of freedom (co) th e
phonon motion is a purely one-dimensional process (Report-2a) . The rough scale processe s
occur on distances of the order of (or slightly greater than) phonon mean free path length s
(Lph) (stages III-V). The transition to averaging (stage III) gives a picture for phono n
population along the molecular system . If the phonon-phonon interaction is elastic, there
arise local or modal temperatures describing thermodynamic equilibrium between phonon s
of a given mode. The notion of statistical temperature is erased at stage IV when th e
averaging of different phonon mean free path lengths is performed . After the transition to a
macroscopic description (stage V), the ballistic processes vanish and macroscopi c
thermodynamics and kinetics can be used .

Taking the phonon band structure and dividing by different phonon branches ha s
significant meaning in describing thermal conductivity. This investigation shows a
dominating contribution from the radial branch of vibration in heat propagation in zigza g
NT and graphene sheets. The radial breathing mode (RBM) was investigated experimentall y
and theoretically in 13-51 . The mean frequency of RBM vibrations was estimated there withi n
the interval (100-300)cm ' that corresponds to estimations made here for the radial phono n
band width (0.004-0.007)eV for graphene and single walled zigzag nanotubes .

Phonon engineering of low-dimensional structures and heat conductivity properties o f
nanotubes are actively discussed in physical literature [6-81 . Establishing a concrete law fo r
the temperature dependence of thermal conductivity at high temperatures as well as a la w
for the increasing at low temperatures is among the most common current problems .
Different sources give the data for maximal thermal conductivity for a solitary carbon tub e
in a wide interval from 200 W/mK to 3000 W/mK . The temperature of maximal therma l
conductivity for many carbon tubes also varies within a wide interval from 150 K to 300 K
from different authors. Another point of interest is the differences in thermal conductivity
for solitary carbon tubes depending on type (armchair or zigzag), chirality and size .

Phonon dynamics and kinetics in tubes with armchair geometry and zero-chirality ar e
considered below and compared with data for zigzag nanotubes .
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Phonon dynamics in an armchair carbon nanotub e

Linear approximation in phonon dynamics is based on the supposition that smal l
atomic vibrations have harmonic character at least in the case of not too high temperatures .
It means that the potential iso-energy I surface in the vicinity of atomic equilibrium position s
has an ellipsoidal form. Classical motion of atoms near their equilibrium points is describe d
by elastic constant k that characterizes atom-atom bonds in the Born approximation . In this
investigation, nonzero elastic constant k' << k, from the framework of linear approximation ,
is used for atomic shifts perpendicular to the bond . The symmetry of carbon structure s
dictates three main types of vibration (radial p-mode, tangential q)-mode and axial z-mode )

Fig.2.1 .
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It should be noted that the principal difference between the vibration branche s
originates from the direction of bonds relative to the direction of the axes of symmetry
associated with the given degree of freedom (Fig .2.2). This difference manifests itself in th e
phonon band structure for the tangential and axial branches in the case of pure zero -
chirality . In the presence of helicity the difference vanishes . In Fig .2.3 (the case with non-zero
chirality), the situation when the tangential (p-mode and axial z-mode have approximately
equal orientation shifts relative to both red and blue bonds inside a chosen elementary cell i s
presented.

Dynamical equations for all three branches of vibrations can be calculated taking int o
account that the motion of each atom is three-dimensional . The zero-approximatio n

Fig.2 .2 . A fragment {9,9}of hexagona l
lattice. Shaded are two equivalent
conventional elementary cells containing
four atoms. Two types of bonds are
presented by different colors . Rolling around
horizontal axes could be implemented onl y
for even number horizontal rows {8,9 }

Fig .2 .3 . Fragment of armchair tubulene (10,5) with non-zer o
chirality created from a graphene sheet {14,10} by rolling u p
around the armchair direction . Picked out is the conventional
elementary cell containing four atoms . Two types of bond s
are marked by different colors .
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approach supposes that the radial p-mode, tangential (p-mode and axial z-mode should b e
considered independently .

Consider an armchair tube (n,0) produced from the fragment shown in Fig .2.2 by
rolling around horizontal direction without any shift . In this case each of the tube fragment s
is connected with the same fragments . Therefore, contrary to the case of flat fragment s
connected to the external media, all atomic positions along with their bonds are described b y
the same dynamical equations . The difference exists between different vibration types o r
branches only .

For shifts directed normal to the tube surface the equation is the following :

{m p ; = - k 'OP, - PEI - P,2 - p,3),

(2.1)
where i,, i2, i3 are indexes for atom i neighbors . Atomic coordinates are not important here .
The universal atomic number i is defined using its position in the row and column of th e
initial flat fragment creating the tube . This type of vibration is called the radial breathin g
mode (RBM) in literature 13-51 .

For tangential atomic shifts, taking into account the atom space coordinates on th e
tube surface cpR , where R is the tube radius and q is the azimuth angle, the armchair case
with the absence of chirality is described by the system :

mx ; = - k(x ; - x,,) - 0 .25k(2x ; - x i2 - x i3 )

(2 .2)
where coefficient 0 .25 characterizes two weak bonds for this vibration .

For axial atomic shifts we hav e
€m Y,

	

=

	

- 0 .7 5 k (2 z ; -

	

z ; ,

	

-

	

z it ) -

	

k '(z ; -

	

z i3 )

(2.3)
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The matrix structure ofall equations (1-3) corresponding to the armchair (n,0) case is shown in

Fig.4 .

Armchair tubulene matrix and vibration amplitudes

Atomic coordinates become important when the mode amplitude distribution i s

presented in the space. The vibration amplitudes for mode s=5 of any type are shown i n
Fig.2.5. As in the case of zigzag NT, there are considerable differences in amplitude
distribution over the armchair tube surface compared to the open carbon net . Th e
differences are caused by the changed topology of the system . A difference exists between the
frequency of modes and density of states at the same state but it is not essential .
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Fig.2.6 . p-branch amplitude distribution alon g
zigzag tubulene created from a graphene sheet
{6,5} by rolling up around marked direction . 5th
state. Longitudinal knot's lines are degenerated .

The calculations performed with the system of equations (1-3) give ICsi 1 2 for
eigenvectors which is a well known standing wave picture with the corresponding number o f
knot's lines depending on the state number s. Increasing the number of states leads to the
formation of lateral (parallel to z-axes) and transverse (circular) knot's lines dividing th e
tube's surface. Fig.2.5 illustrates the well known knot's theorem for the 5 th (or r-4 th ) state
where two twice degenerated knot's lines cross circularly to the tube's surface . Increasing the

0

Fig .2 .8 . Lower part. Three branches of phonon
spectrum for armchair tubulene created from a
graphene sheet (8,15} by rolling up around z-axes .
Upper part. Radial phonon band for zigzag { 8,15 }
NT.

Fig .2 .5 . Calculated p-branch amplitude
distribution s=5 along armchair tubulene
created from a graphene sheet {6,5) b y
rolling up around marked direction .
Transversal knot's lines are degenerated .

Fig .2 .7 . Calculated mean square amplitud e
distribution along armchair tubulene created from a
graphene sheet {15,5) by rolling up around marke d
direction. T=0.03 eV. Circular arrows show rolling u p
of the structure .
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tube's length leads to a considerable change in the picture of vibrations . The same 5th (or r-
4 th ) state in the zigzag case, presented in Fig .2.6, has knot's lines perpendicular to those of
the armchair case .

The mean vibration amplitudes Aj, averaged for the state populations n,, are almos t
constant and do not deviate sufficiently along the tube surface . There is a difference in zigza g
nanotubes where ICf; 1 2 decreases from the lateral ends to the middle axes of the nanobridge .

A j =

	

I C sj 1 2 h s 6

s , 6

	

(2.4)

where ns, is the population of s, a state, j numbers atoms situated on the tube surface an d
Csi is the s-state probability amplitude at j-position of the net . Coefficients Csi are the
components of eigenvectors arising as the solution of systems (1-3) . Mean square amplitudes
calculated for temperature T=0 .03eV by expression (4) are shown in Fig .2.7. The averagin g
was made here over all phonon obranches . One can see that in contrast with flat carbo n
terminated nets with free edge atoms (Report-ib) and to some extent zigzag carbon tubes
(report-2b), the closed armchair structure has almost constant amplitudes along al l
directions over the surface of the tube .

Phonon mode frequencies are obtained from expressions (1-3) as eigenvalues . In
Fig.2.8, three branches of the phonon spectrum for an armchair tubulene having 8
honeycombs in the circumference are presented .

Armchair tubulene spectrum and DOS

The density of states may be approximately defined by the following expression .

aNsff
g (wsa) _

aw
sv

(2.5)
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This transforms into an exact equation if the number of degrees of freedom becomes larg e
enough. Here, Ns, numbers phonon states with frequency cos, More correctly, the density of
states function may be calculated providing preliminary state grouping and densit y
determination inside each group .

DOS with preliminary state grouping have been calculated by dividing the whole
frequency band interval into h=lnt[4r/5] sub-intervals (or near this value) within which th e
number of eigenmodes were counted . The frequency spectrum and DOS function in the zero
chirality armchair nanotube case are presented in Figs . 9-11 . Fig. 9 was obtained by
numerical calculation of system (1) described by the matrix of eigenvalues problem shown i n
Fig.2.4 .
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Fig .29 . Radial mode density of states for armchair tubulene created from a graphene sheet (8,15 )
by rolling up around z-axes . Insertion the same for zigzag tubulene .
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The comparison between results obtained for armchair tube radial . mode spectru m
and DOS functions for a zigzag tube and a graphene fragment with the same number o f
atoms shows the absence of any significant differences .

Thus, the process of rolling a sheet up into a tube does not influence the spectrum an d
density of states in this type of vibration case. But the distribution of vibration amplitudes
(Fig.7) differs from that for graphene (see Report-lb, Fig.3, Fig .9a, Fig .9b) where the mean
vibration amplitudes of the sheet's free edges were bigger than that in the middle .

The density of states frequency function for the tangential branch of vibration s
calculated with equation (2) is shown in Fig. 2.10. The insertion shows the result of numerica l
calculations performed before for the 9-branch in an armchair geometry equivalent to the z -
branch in a zigzag NT. Note the narrow subband near 0.125co (see insertion) that plays th e
role of a characteristic "mark" for the changed topology of the system . This subband
contains 2*n levels in the middle of the gap that occur because the new topology now permit s
circular standing waves z-type vibrations that were forbidden before in the plane structure .
In the armchair geometry, circular atomic chains are absent (for 9-type vibrations) and th e
middle-gap subband vanishes again .

Comparing results obtained for zigzag and armchair tubes for the DOS functio n
shows some differences . The subband inside the gap (see insertion) originates from circula r
chains of equivalent atoms in zigzag geometry while for armchir geometry the circles are
absent . On the other hand, graphene z-branch DOS is very similar to tangential armchai r
due to the absence of circular symmetry .
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0 .175
1

Fig . 2 .1 0 . Tangential 9-mode density of states for armchair tubulene created from a graphene shee t
{8,15) by rolling up around z-axes . Insertion is zigzag equivalent for this that is z-mode DOS .
h=Intl4r/51 .

O

40



The frequency spectrum for z-branch modes calculated from the system of equation s
(3) is shown in Fig.2.11.

II .

	

Generalized equation of
thermal conductivity in a
single nanotube

The

	

PQDM

	

analysis
proposed in Report-lb conside r
heat processes from "firs t
principles" both using microscopi c
characteristic on quantum leve l
including

	

phonon

	

jum p
probability, phonon-phonon
interaction, calculated spectru m
and amplitudes distribution alon g
the structure and macroscopic

( 0

Fig. 2 .1 I . Axial z-branch density of states for armchair tubulene created from a graphene shee t
{8,15) by rolling up around z-axes . Insertion is zigzag equivalent for this that is (p-mode DOS .
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Fig.3 .1 . One dimensional phonon dynamics. Exact
temperature distribution along the tube given by (4.4). Ti
Tr.are temperatures of baths connecting with tube ends, L

is the tube length . End points come together all modal
(partial) temperatures for each s6.

T l

T1
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kinetic approach operating by length of phonon decoherence Iph or phonon mean free path .
The time of the phonon state establishing in area Iph x 27rR is much less than the phonon
lifetime . The latter is determined by phonon-phonon scattering and may lay in interval (10 4 -
10'7)s [2] . This supposition allows one to consider propagation of phonons as a sequence o f
jumps from one fragment to another with relatively long life on each one. In a tube of not too
big radius R the phonons propagate by jumps between mean free path-sized areas .
Neighboring areas play a role of leads having some fixed temperatures . Taking into account
that phonon scattering processes are weak ones we have obtained generalized equation o f
phonon dynamics (Report-lb, paperzd-a.doc) . In ID case it has the form

orisff =y6a'n
scT

z &2

Temperature distribution along the tub e

The phonon mean free path llh decreases with increasing of temperature . Evaluations mad e
in different sources give interval from hundred Angstroms to several micrometers at room
temperatures . In any case azimuthal phonon motion may be considered as ballistic one an d
jumps or diffusion in tubes may occur only in axial direction . In relation to phonon
propagation nanotubes embody an ideal one-dimensional system . In stationary case it is eas e
to write the exact solution of the one-dimensional equation (1) if to start from generalize d
equation written for populations nsa (Report-2b) .

T(Z) =asa / Ln l +	 L
(cos,,

	

n1)+ [nr (w ) - nl (cos, )]z
(3.2)

Here L is tube's length, z is axial coordinate along the tube, n i n, are population numbers
nsa taken at left and right temperatures of both tube ends T1 ,7', . Indeed on the macroscopic
level local populations n 1 n, obeys equilibrium Planck law. The approximate behavior o f
temperature distribution is shown in Fig.3.1. The bundle of partial modal temperature s
comes together in end points . With increasing of temperature all modal dependences becom e
equal. The difference may be essential at low temperatures .

Thermal conductivity and phonon mean free pat h
Thermal conductivity was calculated here in PQDM approach for tubes of armchai r

geometry by expression obtained in previous reports lb and 2b .

(3.1)
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(3.3)

where lp h is phonon mean free path, square modulus reflect connections of end atoms of th e
tube fragment with the rest part of the tube .

	

Gl s

	

C-

(3.4)

Left and right end atoms numbered it and i, were taken into account with its bond s
orientations. Formula (3) is a partial case of obtained in Report-lb expression (16) for
thermal conductivity when left and right DOS functions coincides with own density of state s
gr gi.

The lp h is playing here in some sense the double role . From the one side it dictates th e
length of tube fragment where phonon states occur in ballistic regime . For an armchair tub e
made from a graphene sheet {n,m} we have 12ph =3m2a 2/4, where a is the bond length . In
accordance with PQDM approach lph coincides with the length of calculated fragment with
phonon standing waves inside. In contrary, DOS function g(a ) describes the left (=right)
medium. From the other side lp h depends on phonon-phonon collisions that in own turn
depend on the temperature.

It is worth to evaluate temperature dependence of lph . General expression for phono n
mean free path is given by the surface density of phonons S/N.

	

I
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Id ' Iph

	

l	 	 la 	
ph

	

N

	

N

	

ph <N>

(3.5)

< N >=
1 Jn ( w ) g ( w )d w
0

(3 .6)
where S is the tube surface where phonons propagate, Id is the tube circle length, A is the
phonon band width and <N> is mean number of phonons . Taking into account that <N>ocT
we have

l

	

1
ph T

(3.7)
Implicitly lp h is contained in upper limit of summation in (3), in G1,12 and in g(o ). The size
dependence for armchair tubes of given diameter and at given temperature was calculated
by (3). The Fig.3.2 presents typical picture of quadratic increasing for ., vs phonon mean fre e
path .
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A l2

(3.8)
Relations (7), (8) contain an explanation for the well-known experimental fact of therma l
conductivity temperature damping at high temperatures by 1/T law . This phenomenon i s
observed both in 3D and low-dimensional systems . Proposed here PQDM approach gives a
simple opportunity to connect heat propagation with the definition of phonon mean fre e

20

0

600

	

600

L / (3a24)
Fig.3.2 . One dimensional phonon dynamics. Calculated total thermal conductivity length
dependence that includes all vibration branches of armchair NT . Lph is phonon mean free path, a
is carbon bond length .

1400120010004002000

path.
The thermal conductivity dependence on the radius of SWNT is also approximatel y

quadratic (Fig .3.2, insertion).
The result of thermal conductivity numerical calculations for radial, azimuthal an d

axial phonon branches (a=1,2,3) is presented in Fig.3.3. It is easy to see that the sum on all a
will be very close to curve 1 connecting with radial p-band (Fig .3.4). The unity ko determined
from (3) and formula (16) from Report-lb is measured in W,m/K

2

	

2fcaGc k
o

	

h w o
(3.9)

where a=1.2 Angstrom is unity of length, k is the Boltzmann constant, coo is accepted her e
phonon energy unity and Go is the constant of phonon-phonon interaction . Evaluations usin g
data of 18] and 19] give fo r
characteristic phonon energy very wide interval c oE10 .8-1.6JeV.
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T/wo
Fig.() . Thermal conductivity temperature dependence . Armchair N!. Curve I corresponds to z-branch contribution, curve 2 to 92-

branch and p-branch contribution is presented by curve 3 .

It should be noted that the weak temperature dependence also has the structure
constant (bond length a) of the system. Thermal expansion of single walled nanotubes wa s
investigated in 1101 but the result obtained there for radial expansion is not a reliable on e
and deviates from negative to positive values . Elastic constants and the constant of phonon -
phonon interaction Go depend on the temperature too .

The maximum is situated near 1.5av both in armchair (Fig .3.4) and zigzag case
(Report-2b, Fig .13). It means that the difference between two geometries exists only on th e
dynamical level of tiny scale processes and vanishes after the transition to rough scal e
processes . The insertion to Fig .3.4 presents the law of initial temperature rising of therma l
conductivity at low temperatures. Our conclusion .1-T2 for an isolated SWNT coincides with
experimental data obtained in direct measurement for MWNT by [111 and is in contradictio n
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0 .06

	

0 .08
Tlwy

Fig.3.4 . Total thermal conductivity temperature dependence . Armchair NT . Eight honeycombs
along the circumference . Insertion : the law of increasing at low temperatures : A,-T2, T E(0,
0.005)ab .

45



with linear temperature law obtained in [121 for SWNT bundles .

The conclusion that the radial mode contribution to heat transfer is dominating in th e
temperature interval under consideration is based on the supposition that the phonon -
phonon interaction constant Go (see (3), (4), (9)) participating in end atoms constants G,, doe s
not depend on the phonon type (p, cp or z) . Then due to the large density of states in narrow
low-frequency p-band comparatively with that for cp- and z-vibrations essential prevail of p -
vibrations arises . So at actual temperatures p-branch of phonons determines hea t
propagation through single-walled armchair nanotube . The same effect was obtained befor e
and for zigzag geometry too . Of course, the problem of phonon-phonon constants Go fo r
different vibration types exists now and should be investigated in detail in following study . It
should be mentioned also very important in PQDM starting constant o that have to b e
found from comparison with experimental data for isolated SWNT. As well the problem o f
mean free path distribution function is open and should be investigated more detail .

IV

	

Thermodynamics and statistics of armchair nanotube s

Static thermodynamic characteristics of non-helical armchair nanotubes of differen t
sizes have been calculated . If the system exists in equilibrium state, the atomic hea t
capacitance C(T) and entropy S(T) are given by the following expressions ,

C ( T ) - 1 E cosv
aN~~sQ)_1

E w , N ( co sQ)( N ( co sa) +1 ) ,
r s,cr

	

rT s,a

(4.1 )
where r=2n(m+1) is the number of atoms in a armchair tube of length 1.7ma and radius
a/sin(wr/n) .

C(T)dT 1 dT

	

2

T

	

= r
f
T

E w s6 N (ws6)( N (w s6) + 1 ) ,
s,a

S(T)=f

(4.2)
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The calculated temperature dependence for heat capacitance is shown in Fig .4.1 .
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Fig.4.1 . Heat capacitance vs temperature dependence for armchair nanotube . Dulong-Petit law an d
W. Nernst theorem . wo€(0.8, 1 .2)eV .

The curve illustrates the third thermodynamical law (W .Nernst theorem) at low
temperatures and Dulong-Petit law at high temperatures (T>0 .1(.oo) . An absolutely equivalent
curve was obtained before for zigzag NT (Report-2b) . This means that from a
thermodynamical point of view both NT symmetries, armchair and zigzag, are equivalent a t
all temperatures.

The Dulong-Petit law is a tag in thermodynamics that embodies the classic systems . It
is clear from the Fig.4.1 that the notion "high temperatures=classical system" begin to ac t
from 0.150, that is approximately 1400K, for carbon single-walled nanotubes . Thus, in rea l
temperature intervals, single-walled nanotubes are non-classical objects .

The entropy behavior has similar characteristics at low temperatures and show s
logarithmic growth at high temperatures both for zigzag and armchair nanotubes .

V.

	

Summary and discussio n

A complex approach PQDM applied gives an opportunity to describe dynamics ,
kinetics and statistics of phonons in carbon nanotubes with zero-chirality . Fig.5.1 illustrates

no averaging - no wave equatio n
r infinite speed of excitation s

ka2 a 2 c x >ka2
C X >_	 -	

~x

	

=
4

nz

	

M

v=	 a W

a q

Fig.5.1 . Averaging procedures and speed of propagation .
a is interatomic distance, <x> is mean atomic shift , x is extended coordinate of the freedom' s
degree, V is excitation velocity, m is atom mass, k is elasticity coefficient .

v =
classical dynamics

= -k(2x ; - xi2 - x) 3
equations

mean free path averagin g
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the important role of averaging procedures in understanding of phonon, sound and hea t
propagation in low-dimensional atomic nets. The classical dynamical equations don't contai n
retardation in non-relativistic approach . This causes the infinite speed of vibrationa l
excitation propagation along the net or nanotube (Fig .5.1, second column, upper row) .

The first stage averaging is transition to presentation of dynamical equations in th e
finite differences (second column, middle row). Evaluations by data 19,101 (k--4 .65 . 10

"12
N/m)

and our data [131 give for second row velocity V=18 .3 km/s. This value is close to soun d
velocity in diamond (1,1,0) direction .

More rough averaging at the
phonon mean free path distances i s
used to describe heat spreading
along carbon nets (Fig.5.1, second
column, lowest row). Found from
RBM frequency band width value of
phase velocity V= a•AI/7r is more
than twenty times less (0.85km/s)
than for the pure sound .

Atom vibration dynamic s
was considered for carbon
nanotubes of armchair geometry i n
comparison with the results
obtained for graphene sheets .
Vibrational eigenmodes, density o f
states and amplitude distribution fo r
tube fragments of the length up t o
40 hexagons were calculated i n
linear approximation for three types

of vibration : athimuthal or tangential (p-mode, radial p-mode and longitudinal z-mode .
It's shown that phonon propagation in actual nanotubes is characterized by a kind o f

"compactification" of circular freedom's degree due to the big phonon mean free path .
Nanotubes of actual diameters are ideal one-dimensional phonon qnd heat conductors.

Phonon band structure was investigated for armchair nanotubes on the base o f
hierarchical law and system symmetry.

Thermal fluxes and thermal conductivity were considered in PQDM . Temperature
dependences were obtained . The mechanism of heat conductivity high temperature dampin g
is reflected in Fig .5.2 . Two competitive tendencies produce thermal conductivity maximum a t
intermediate temperatures (100-300)K .

The exact solution of generalized thermal conductivity equation was obtained fo r
nanotubes. Temperature distribution along the tube was derived analytically .

Size dependences were considered for thermal conductivity. It was shown the linear
increasing of heat conductivity with the growth of the phonon mean free path .

Statistical properties were investigated . Heat capacitance and the entropy of carbo n
linear tubes were calculated as the function of temperature .

Our theoretical approach (Fig .1.1) explains the nature of good thermal conductivity in
carbon and carbon-like materials by existing of the soft vibration branch (low frequenc y
RBM phonons with high DOS at thermal energies) accompanied by structure hardness (hig h
frequency (p- and z-branches) providing big mean free path for phonons (Fig.5.2).

T/c:,0
Fig.5 .2 . Temperature dependenc e

conductivity

	

coefficient .

	

Two
tendencies .

of therma l
competitive
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Adding of new layers or new walls to single-walled NT makes breathing p-branch o f
vibrations harder. That causes the sharp decreasing of phonon density of states at the sam e
phonon mean free path. Phonons leave the active thermal zone and heat conductivity
decreases. Therefore, atomic monolayers and isolated single-walled nanotubes have to b e
champions in thermal conductivity . Uniting SWNT into the tight bundles quenches breathin g
mode too. PQDM approach predicts the sufficient worsening of thermal conductivity i n
SWNT tight bundles comparatively with free SWNT . The way of thermal conductivity
enhancement in this case is "dissolving" of inter-tubes bonds and turning out tight bundle s
into the system of almost free tubes .

Pressure decreases thermal conductivity 1141 . The effect is connected with total
hardening of all bonds and phonon modes going away from active thermal zone .

Melting decreases thermal conductivity by another reason : the phonon's mean free
path becomes small .

In conclusion we mark that the problem of creating "heat superconductors" may have a
perspective on the way of hardness-softness uniting . It seems, the natural limit is given by
isolated fragments of carbon-like structures : carbon sheets and single-walled nanotubes . The
question is in the existing of possibility to create more complicate artificial hea t
superconductivity aimed systems .
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VIII. Attachment: Short investigation pla n

2. Phonon(vibron) bands . Direct calculation in elastic approximation .
a) Graphene molecules of various kinds, free and contacting with two leads . Influence

of the number of bounding atoms on phonon structure .
b) Phonon structure of 3-polar and 4-polar molecular bridges .
c) Carbon tubes of various radii . Short fragments . Free and contacting with leads .
d) BN- flat structures . Free and contacting .
e) BN-tubes of various radii . Short fragments . Free and contacting with leads .
f) More complicate geometry . Torus . Two wall C-tube as a heat conductor .

2 Heat transport investigation in PQDM .
a. Linear carbon chains connecting electrodes (analytical approach )
h) Graphene molecules of various kinds contacting with leads . Calculation .
i) Carbon tubes of various radii. Short fragments . Free and contacting with leads .
j) BN- flat structures . Free and contacting .
k) BN-tubes of various radii . Short fragments. Free and contacting with leads

3 Macroscopic manifestations of phonon propagation in carbon nets .
a. Generalized 2D and 3D equation of thermal conductivity in carbon nets .
b. Boundary problem and temperature distribution in macroscopic carbon nets .
c. Boundary problem for heat conductivity in carbon and BN tubulenes an d

temperature distribution along tubulene bridge . .
d. Carbon tubes of various radii . Short fragments. Free and contacting with leads .

4 Phonon-phonon effects in charge and heat transport .
a. Spectrum modification due to phonon-phonon processes ;
b. Non-linear transport through flat carbon structures ;
c. Non-linear transport along carbon tubulenes ;

5 Thermodynamics and statistics of closed and open carbon net s
a) Statistical sum and entropy of carbon nets (graphene and tubulene) .
b) Heat capacitance of graphene and tubulene structure s

6 Heat-transistor effects .
a) Three pole system s
b) Four pole system s

7 Electron-phonon effects in charge and heat transport .
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a) Transport through linear carbon chains connecting electrodes (analytical approach) .
Dragging in linear bridges .

b) United transport in graphene molecules of various kinds, free and contacting wit h
leads.

	

Calculation .
c) Electron-vibron interaction in carbon tubes of various radii . Short fragments . Free
and

	

contacting with leads .
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1 .3 .2 . Carbon heat radiators in polymer surroundings

Here we consider the heat transfer problem for a solitary carbon nanotube (NT )
inserted into a solid matrix with low thermal conductivity . Phonon eigenstates, density o f
states and vibration amplitude distribution along the molecule will be investigated for a N T
laterally in contact with the continuous external medium . The temperature distributio n
inside a low-conducting medium containing a high-conducting channel will be calculated i n
the framework of boundary problems (point 3d) . Concentration dependences of the effectiv e
conductivity of the composite will be evaluated . Also, the influence of the embracing polyme r
molecule on the phonon dynamics and the heat spreading along the nanotube will b e
calculated .

Heat conductivity properties of nanotubes are actively discussed in this literature . The
following is a list of questions and problems under investigation :

• the general features of the temperature dependence of thermal conductivity - th e
mechanism of temperature damping at high temperatures and concrete law o f
increasing at low temperatures .

• the maximum thermal conductivity for a solitary carbon tube has not bee n
measured reliably . Current values vary on a wide interval from 200 W/mK to 300 0
W/mK from different authors .

• the temperature for maximum thermal conductivity for carbon tubes has not bee n
reliably measured and also varies on a wide interval from 150 K to 300 K fro m
different authors.

• the question is whether there exist differences in the thermal conductivity of
solitary carbon tubes depending on the type (armchair or zigzag), chirality an d
diameter.

• are the differences between thermal conductivity of solitary carbon tubes, fla t
carbon structures like graphene and graphite (in plane) essential ?

Different authors give different answers to these questions . Another complex proble m
arises in composites containing nanotubes as a mixture element . Experiments show that a
medium like epoxy, having very low thermal conductivity, may change its thermal propertie s
dramatically when a small amount of nanotubes is dissolved in it .

In [11, the single-walled carbon nanotubes (SWNTs) were used to augment the therma l
transport properties of industrial epoxy . It was shown that the thermal and mechanica l
properties of SWNT-epoxy composites were improved significantly. Samples loaded wit h
1wt% unpurified SWNT material showed a 70% increase in thermal conductivity at 40 K ,
rising to 125% at room temperature.

The phenomenon of SWNT thermal conductivity was discussed in [2] . The compariso n
made in this article shows that the measured heat conductivity of single-walled nanotubes
differs from that of both 2D graphene and 3D graphite, especially at low temperatures ,
where ID quantization of the phonon band structure is observed . For aligned bundles of
SWNTs a thermal conductivity of more than 200 W/mK was obtained at room temperature .
A linear temperature dependence up to approximately 40 K was observed in [21 for SWNTs .
Contradicting results, between quadratic and linear laws at low temperatures, were obtaine d
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for the T-dependence of thermal conductivity of multi-wall NT (MWNT) [3] . The therma l
conductivity of a MWNT bundle was measured in the interval TE [8-350] K and a maximu m
of 1200 W/mK was reached at 300 K . In [4] it is shown that the heat processes of nanotube s
are similar to that of two-dimensional graphene at high temperatures but is sensitive to th e
effects of rolling the graphene sheet into a small cylinder at low temperatures .

Measurements for tube bundles show that inter-tube coupling is relatively weak, an d
the thermal conductivity of nanobundles reflects the on-tube phonon structure [4] . The
temperature dependence of electrical conductivity and thermopower were studie d
theoretically in [5] for single-wall carbon nanotubes using a Green's-function theory . It i s
shown that armchair and zigzag tubes exhibit quite different temperature dependencies of
transport coefficients . The thermal conductivity and thermoelectrical power of a singl e
carbon nanotube were measured in [6] using a micro-device. The observed thermal
conductivity is more than 3000 W/Km at room temperature. The temperature dependence of
the thermal conductivity exhibits a peak at 320 K. The molecular dynamics method was used
in [7] to simulate heat conduction along a single walled carbon nanotube with the Tersoff- B
Renner bond order potential [8] . SWNT models with different chiralities (5,5), (8,1), an d
(10,10) were investigated for the typical length about 125 Angstroms. Thermal conductivity
values from 200-300 W/mK were obtained and the dependence on the length of the tube was
relatively small. The thermal conductivity for (8,1) chiral tube was measured to be a littl e
smaller than the armchair system. The phonon density of states were measured as the powe r
spectra of velocity fluctuations and compared with the experimental Raman spectra .

Measurements of the thermal conductivity made in [9] show graphite-like behavior fo r
MWNTs but a quite different behavior for SWNTs, specifically a linear temperature
dependence at low temperatures, which is consistent with one-dimensional phonons . The
room-temperature thermal conductivity of highly aligned SWNT samples is over 200 W/mK ,
and the thermal conductivity of individual nanotubes is likely to be higher still Carbo n
nanotubes have very high thermal conductivity ; comparable to diamond crystal and in-plan e
graphite sheet [10] . The nanotube bundles show very similar properties to graphite crystal i n
which dramatic differences exist in thermal conductivities along different crystal axis .

We will consider problems relevant to heat propagation in composites containin g
nanotubes weakly connected with the surrounding medium. Only zigzag and armchai r
single-walled nanotubes will be taken into account .

1 .3 .2a. Dynamics of carbon tubes laterally in contact with external mediu m

The idea of the phonon quantum discrete model (PQDM) is to use a discret e
microscopic model for phonon dynamics of relatively small molecular fragments that ar e
approximately of phonon mean free path sizes. The dynamics of such a cluster may b e
described classically in the Born approach and all the important data may be obtained :
eigenfrequences, density of states and phonon amplitude distribution inside the molecula r
fragment during its lifetime. Connected fragments of a molecular net are in an uninterrupted
process of phonon exchange. Due to the weak fragment-surrounding-medium interaction th e
process may be described by Fermi's "golden rule" that determines a value for the transfe r
rate. This quantum characteristic is a transport processes consideration and enables us t o
introduce a microscopic thermal conductivity coefficient that depends on the temperatur e
difference between opposite sides of a fragment that is in contact with the baths .
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The model developed here is based on fundamental data characterizing the structur e
with elastic modulus and elastic coefficients k, describing forces acting along the main axes o f
the bond potential ellipsoid . Thermal expansion coefficient, pressure coefficient ,
characteristic frequency (or phonon band width) temperature and pressure dependence s
may be included in the proposed model.

the tube surface is as following :

In this section, we consider a nanotube
inserted into the solid matrix - a continuou s
medium of relatively small heat conductivity.
Suppose here that the tube-matrix bonds are
weak, that is, the bond is of a physica l
adsorption type. An armchair nanotube o f
radius r0 that is weakly connected with th e
walls of the channel by horizontal bonds i s
presented in Fig . 1 .4 .

The vibration dynamics of the armchai r
tube is represented by three equations for th e
main types of atomic motion. The adsorption
bond will be described by elastic constant x i f
the shift is directed along the bond and K' if it
is in the perpendicular direction . We assum e
that adsorption is weak and K k/5, K' -= X/10 .

The equation for shifts, P1 , directed normal to

Fig.1 .4: Armchair-nanotube inserted into soli d
matrix Horizontal blue lines show
tube-medium bonds. ro is tube radius,
medium is shown by green .

m P, = -KP; - k'( 3 P; -Pry -P;2 - Pi3 ),

	

(1 .4)

where i,, i2, i3 are indexes for the neighbors of atom i, x and k' are the elastic constants o f
external adsorption bond and intrinsic respectively . The united atomic number i is defined
using its position in the row and column of the initial flat fragment creating the tube .

For tangential atomic shifts we will take into account the atomic space coordinates o n
the tube surface x=vR, where R is the tube radius and co is the azimuth angle. The armchai r
case with the absence of chirality is described by the system :

m1 1 = -0 .25k(2x l -x-x i2 )-k(x t -x ;3 )-Kxl

(1 .5)

where coefficient 0.25 characterizes two weak bonds laying on the tube's surface fo r
tangential atomic shift. Another bond directed along the atomic shift is most intensive. The
bond of adsorption connection with the external medium is relatively weak for this motion .
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For axial atomic shifts we have :

mz 1 _ - k(z 1 -z ; ,) - 0 .75k(2z 1 -z i2 -z i3 )-K'z,

	

(1 .6)

where the coefficient 0 .75 is connected with two strong bonds and ic' is the elastic constant
describing motion perpendicular to the absorption bond K.

Calculations show significant differences in phonon band characteristics for the radia l
branch of vibrations compared to that of a free armchair tube . In Fig.1 .5, we see the DO S
function for the p-branch of phonons found from (1 .4) at x=0.2k and K'=1o'10 . The bottom of
this band rises at about 0 .04a though the top of the band remains almost at the sam e
position. The effect has its explanation in an interesting quality of atomic radial motion . Fo r
radial shifts, even relatively weak adsorption bonds have elasticity coefficients bigger tha n
inner bonds . This means that the radial band for a free nanotube transforms to a band of a
system of almost non-connected atoms adsorbed onto the intrinsic medium surface .

The eigenstates are grouped in this case near the characteristic frequency of the
adsorption bond . Radial vibrations occur as if each carbon atom is almost independent fro m
the neighboring carbon atoms in the nanotube. Due to the band narrowing, the mean densit y
of states becomes several times greater for a nanotube connected by adsorption bonds with a
medium surrounding the nanotube surface. Comparison with the data for a free armchai r
tube shows that only the density of states of radial modes changes essentially with a shift an d
redistribution .

V7 20
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Fig.1 .5 : Calculated DOS function for radial-branch phonons in laterally adsorbed carbon NT .

,c-0.2k, x'=x/10
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Fig.1 .6: Calculated DOS function for tangential branch of phonons in armchair nanotube having 8
hexagons in circumference and laterally adsorbed by external medium . K=0.2k, x'= id10.
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The DOS function calculated for the (p-branch of molecular vibrations found from (1 .5
at K-=-0.2k and X'=)110 is plotted in Fig .1 .6. Minimal differences may be observed in th e
density of states distribution for the lowest phonon modes that are shifted up by
approximately 0.01 ,. The upper part of the band density remains unchanged .

Similar small deviations are observed for longitudinal z-branch vibrations in a laterall y
adsorbed armchair nanotube. The band bottom also shifts up by about 0.01, at the
immovable band top . The calculated DOS function for the z-branch of molecular vibrations ,
found from (1 .6) at parameters given above, is plotted in Fig .1.7. Minimal differences i n
comparison with free armchair nanotube may be observed as well.
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Fig.1.7 Calculated DOS function for axial branch of phonons in armchair nanotube having 8 hexagon s
in circumference and laterally adsorbed by external medium. =0.2k, x'=x/1 0
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It should be marked that considerable changes arise only for radial the branch o f
vibration due to the direct influence of adsorbtion bonds on breathing modes . As radia l
vibrations play the key role in heat transport processes through nanotubes one should wai t
for a significant transformation of the thermal conductivity coefficient A(T) .

The densities of phonon states for all three vibrational branches were found to have th e
same shape for different NT radii (parameter n) and different lengths of fragmen t
(parameter m) . The proportionality coefficient depends on the number of atoms in a
fragment .

1 .3.2b. Phonon dynamics of carbon tubes embraced by polymer molecul e

We have also undertaken the investigation of a two-molecule system : a single-walled
nanotube embraced by a polymer molecule like polyacetylene . The calculation of the syste m

was made in the PQDM
framework for two molecules:
an armchair NT {n,m} (created
from a graphene sheet {n,m} )
and a polyacetylene chai n
(CH) 2 .+ I , adsorbed by the
outer surface parallel to th e
tube axes. Here the index n
describes the hexagon numbe r
along the tube circumference
and index m is the same along
the tube axes . In the armchai r
case the length of the tub e
equals 2ma, where a is the

bond length. In zero-approximation, we consider carbon-hydrogen bonds in the polymer a s
absolutely rigid which leads to an effective mass of the polymer carbon equal to 13 . The
order of this problem's dynamical matrix becomes equal to 2n(m+1)+2m+2 and for the
matrix shown in Fig.1 .8 the (2m+2) subspace has to be added .

The most important for heat transport radial motion is described by equations for
shifts ,c (nanotube atoms) and pi (polyacetylene atoms) directed normally to the tube surfac e

m

	

= - K (P, -

	

J )- k ' ( 3 P, - P,1 - )0 ,2 - P,3 )

m ' P ; = - K (P ; - P,) - k ' ( 2 P ; - P ;l - p ; 2)

(1.7)

where m'=13m/12, is and are indexes for the neighbors of NT-atom i and polymer atom j,
K and k' are elastic constants of external adsorption bond and intrinsic respectively . The
united atomic number i is defined using its position in the row and column of the initial fla t
fragment creating the tube . For tangential atomic shifts we will take into account that atomic
space coordinates on the tube surface x= pR , where R is the tube radius and is the azimut h
angle.

Fig.1.8 A polymer molecule absorbed by armchair nanotube.
Absorption bonds are shown by red lines, C-C bonds of the
polymer are shown by violet color.
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The armchair case with the absence of chirality is described by the system :

mx ; _ - 0 .25k(2x;-x;,-xi2)-k(x ;-x;3)-K'(x ;-xi )

m

	

= - k(2x i

	

- x 32 ) - K '(x i - x ; )

(1 .8)

where coefficient 0.25 characterizes two strong bonds for tangential atomic shift . Another
pair of bonds directed perpendicular to atomic shift is weak and includes a bond o f
absorption connection with external medium .
For axial atomic shifts we have :

m

	

= -k(2z i - z it - z ;2 ) - K

	

- z ; )

m Y, = - k '(z, - z ; ,) - 0 .7 5 k (2 z ; - z it

	

z ,3) - K '(z ; - z )

(1 .9)
where the coefficient 0 .25 is connected with two weak bonds and x' is elastic constan t
describing motion perpendicular to absorption bond K.

In Fig .1.9, we present the general view of all branches of phonon spectra. In all cases ,
the spectrum is the superposition of nanotube and polyacetylene spectra deviated b y
additional bonds.

Fig .1 .9: Calculated phonon spectra for radial (p), tangential (0), and axial (z) branches of NT-polyacetylen e
system . 1 shows the nanotube modes, 2 and 3 are two halves of (CH), band . Here u=W5, ,c'=,d10.
There are eight hexagons in NT circumference .
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1 .3 .3 . Sound propagation in molecular net s

Molecular nets based on carbon and carbon-like systems provide the perfect natura l
target for 2D and 1D systems that allow us to consider the relation between pure non -
thermodynamical sound, called hypersound (or nanosound), and atomic vibrations and th e
structure of phonon band. Wave phenomena in small flat and closed carbon fragments ,
films, fulerenes and nanotubes attract close attention now as they are an important part o f
thermal and transport processes in nanoelectronic devices [1] . Bulk mechanical propertie s
expressed by elastic modules determine sound wave characteristics [2] . The most studied
carbon materials, both experimentally and theoretically, are 3D crystals and thin layers [3] .
The elastic properties of separated low-dimensional nanosize carbon fragments, single-
walled nanotubes etc., give some theoretical troubles connecting the transformation of bul k
notions to 2D and ID ones and with the influence of small sizes [1-4] . Structural and phonon
properties of carbon tubulenes were calculated in [5] with the tight binding approach an d
comparison with flat graphene sheets and bulk graphite was made. The vibrational density
of states for 2D hierarchical quasicrystals has been calculated in [6] with the use of the Born
approximation [2] . Experimental study of the elastic modulus in a multi-wall nanotube wa s
performed in [7] . Thermal expansion of single-walled carbon nanotube bundles in X-ra y
diffraction experiments was studied in [8] .

The classical theory of sound passing through the interface relies on macroscopi c
representations in regards to the nature of sound . The phenomenon characteristic sizes
(wavelength and the size of averaging) are big compared to the lattice constant . Classical
sound is the thermodynamic process uniting both time and space averaging and containin g
many phonons. The boundary conditions (BC) are introduced into the theory as an externa l
term describing the contact type (strong or weak) between the media [9] . In that case, th e
BCs are not connected immediately with the microscopic structure of the boundary and hav e
approximate characteristics. Really, for macroscopic rough boundary, the existing exac t
conditions of the vibration wave passing through the boundary have to be averaged at th e
distance of the sound wavelength . Now that nanoengineering technology is close to creatin g
hierarchical molecular nets consisting of regularly alternating fragments, the problem of
sound propagation in systems with sharp atomic contact boundaries has become the topic o f
interest .

Carbon nanotubes may be modified by periodic liquid surrounding, periodic intrinsi c
contain, periodic embracing by polymer, periodic other atoms adsorbed areas, periodi c
alternating of zigzag and armchair NT, alternating of carbon and BN-tubes, periodic isotop e
saturated areas and so on . A few pretenders where sound with extremely small wavelength s
could exist are presented in Fig .1.10.
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(1)

Fig . 1 .10: Nanosize periodic structures - pretenders to detect nanosound interfierence .
(a) Cross-linked binary graphene sheet with zigzag type boundaries . Conventional elementary cells
are shaded. (b) Carbine-polyethylene periodic linear chain . (c) Periodic fragments of a nanotube
differed by elastic constants and (or) atomic mass . land 2 are hypersound generator and receiver .

Such tailored structures may play the same role for the hypersound as photonic ban d
gap materials perform for electromagnetic waves [10] . One can suppose the existence of th e
similarity between acoustic and electromagnetic wave phenomena is due to the ban d
structure and energy transport trough periodic systems [11] .

It should be established that the connection between the nanostructure phono n
dynamics and sound waves of small wavelengths is not investigated in detail for mesoscopi c
molecular nets, especially if it reaches the boundary condition problem in complex carbo n
nets. To obtain the exact BC for sound wave we propose here the integral procedure tha t
starts from dynamical equations for atom vibrations in physically small areas near th e
boundary. The procedure includes averaging of discrete dynamical equations and transfer t o
a continuous description . The comparison of notions for native phenomena like phonons ,
sound and hypersound is used to emphasize the nanosound specifics in molecular nets . The
hypersound band structure is calculated in linear approximation for periodically cross -
linked nets of different nature . The structure and angular-frequency diagrams describing the
sound band structure are obtained .

1 .3.3a. Phonons and Hvpersound in Low-dimensional Molecular Net s

The molecule vibrational eigenstates are called vibrons . In bulk crystals, the same are
defined as "phonons". Low-dimensional molecular nets occupy an intermediate positio n
between small molecules and big macroscopic crystals. Nano-engineering allows the
production of complex molecular net systems containing alternating fragments [12, 131 . The
external geometry of such cross-linked systems is similar to well-known photonic crystals s o
sound propagation should possess the same properties including frequency bands and gap s
[11] . Electron transport, light absorption and other impact processes in periodically cross -
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linked molecular nets may be accompanied by sound pulses of comparatively shor t
wavelength . Characteristic wavelengths of the sound must be about 10 2 nanometers wit h
frequencies of the order of terahertz .

The difference between crystal vibrational eigenstates, phonons and sound is illustrate d
by the well-known solution for an isolated damped linear oscillator with external driving
force

z+2y+wox= F o e ` ° `

F e' '
x(t) = x 0 e -rf cos(wot+gyp)+	

2

	

° 2 ---
w o -w + 2iyw

( 1 .10)

where xo is the vibration amplitude, ab and (do are eigenfrequency and shifted
eigenfrequency respectively, Fo and w are the external force amplitude and frequenc y
respectively, y is the damping constant, is the initial phase shift .

So, phonon modes have strongly determined frequencies and generally speaking the y
disappear with time but the sound that is connected with the external source of energy ma y
be of any frequency . Principally, the same takes place for the net of linked oscillators . It is
worthwhile to note that the solution for the system of linked oscillators also has a linea r
combination of partial solutions, like (1 .10), and does not contain retardation or any sign o f
propagating waves.

Several remarkable features are present in periodic molecular nets that differ fro m
bulk materials ]9] . First, there exists a precise atomic scale of boundaries between the ne t
fragments with the absence of intermediate layers . The second feature is that phono n
branches participate in sound transportation independently in zero-approximation and obe y
separate boundary conditions. The third one is the strongly non-macroscopic characteristi c
of elastic waves in small molecular fragments containing a periodic net . This is the reason fo r
the term "nanosound" to differentiate nanometer sound waves from macroscopic sound .

The averaging procedure plays an important role in understanding phonon, soun d
and heat propagation in low-dimensional atomic nets . Classical dynamical equations in the
non-relativistic Born approximation do not contain retardation . This causes the infinite
speed of initial vibrational excitation propagation along the net or nanotube .

The first stage of averaging is the presentation of dynamic equations in a finite
differences view. More rough-averaging of the phonon mean free path distances is used t o
describe heat spreading along carbon nets .
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Hypersound Phonon standing
waves

Macro-sound

Frequency spectru m
type

Continuous Discrete Continuou s

Wavelength diapason 0-103 nm No wavelength More than 1 mkm

Size of state No Mean free path(*) No

Frequency diapason (101 ° - 10'3 ) c 1 Phonon bandwidth Less than 10 10 c
1

Size of averaging
range

lnm (elementary cell) No averaging 1-10 mkm

Examples of activity
processes

Impact effects, externa l
sources

Raman effect External source s

Transmitting energy Energy of atomic
vibrations

Heat Energy of elasti c
deformatio n

Nature of
phenomenon

Extending waves of
atomic vibration

Standing waves of
vibrations(eigenstates)

Extending
deformation waves

Note: (*) determined from the phonon lifetime relatively the interaction with other particles and external medium .

Table 1 : Sound, hypersound and phonon s

Non-linearity may be presented directly in the dynamic equations as a consequence o f
averaging and transfer to the rough scale of the phenomena . It should be noted that non-
linearity is not connected with the damping of whole phonon states . The energy dissipation
and the width of states arise formally when first derivatives are added into the system o f
classical dynamical equations.

Hypersound waves occur as the result of averaging of classical equations of atomic
dynamics . The transfer from equations in finite differences to continuous representatio n
gives second derivatives in both space and temporal . As the averaging acts at very smal l
areas having sizes of an elementary (conventional) cell, the result depends on the concret e
symmetry of the elementary cell.

a. Periodic linear chain :
The simple case corresponds to waves in a linear chain with periodically alternating

fragments . Let us consider a molecular chain with regular alternation of equal fragments o f
two types. There exists three vibrational branches that correspond to three degrees o f
freedom for each atom s=1,2,3 . Immediately, from atomic dynamical equations, we hav e

a 2 < x > s _
V 2 a2

< 2
>s = o

	

Vs = a /L s

at2

	

s

	

azs

	

S

	

m
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where a is the interatomic distance, <x> S is the mean atomic shift in s-direction, z., marks the

extended coordinate of s degree of freedom . Evaluations by data [5,121 (x=330 N/m) give for
sound velocity along the carbon net V=18 .3 km/s . This value is close to the velocity of soun d
in diamond in the (1,1,0) direction .

b. Square lattice :
Waves in hypothetical simple quadratic 2D lattice are described by equatio n

a 2 <x>

	

2 a 2 <x> s

	

2 a 2 <x>S
= o

a t 2

	

-
vs

	

az 2
	 + (VS )	 ay 2

Here we are taking into account that the elastic constant for motion transverse to th e
bond direction differs from that for motion along the band. In 2D structure it is convenien t
to mark the degrees of freedom through the generalized coordinates . In quadratic lattice s=z,
y, p, the latter describes vibrations perpendicular to the lattice plane. (1.12) is anisotropic for

separate branches s=z, y. The medium in-plane isotropy manifests in correlation V _ = V

andV,, = V ' .

c. Honeycomb lattice zigzag nanostructure, Z-branch :
The dynamics of longitudinal motion along the net or nanotube z-axes may be writte n

for the whole elementary cell having two atoms . For any i-atom we have for s =1 degree o f
freedom,

1

	

r

	

u

	

dmi. = -k(2x1 -x . -xl )-0.25k(2x1 -x -xl )

where the upper indexes mark coordinates of neighboring atoms in y- and z-directions . Two
brackets in the right-hand part of (1 .13) are transformed into the space coordinate secon d
derivatives after averaging along z-direction and y-direction . In the zigzag case, th e
averaging distance between neighboring elementary cells equals to 3a/2 along z-axes and 3"2a
along y-axes. Inserting these distances into the finite differences derivatives gives the wav e
equation :

(1.12)

(1.13)

-v 2

	

-v 2

	

= 0
at`

	

ay
x >

Z

	

az -
(1.14)

where, due to the system anisotropy for z-branch of vibrations as to z- and y-directions, w e
get different wave velocities along z- and y-directions :

Vz = -jVy /2 =1 .5 a Nik / m

	

(1 .15)
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d. Honeycomb lattice, zigzag nanostructure, (p-branch :

This branch is connected with the s=2 circumferential degree of freedom in a tube-
like net and y-motion in plane structure . For all i-atoms, we have the system of connecte d
equations,

u

	

d

	

1mz; = -k(2x1 -x; -x; )-k'(2 x; -x; - x
r
;

	

(1 .16)

that transforms after the transfer to the finite difference view into the wave equation :

a 2 <X> 2 a 2 <X>

	

2 a 2 <X>
= o (1.17)ivy - V Ze2at ay

	

aZ 2

3a

	

1k'
(1.18)Vz =

2

	

2m

where v Z is the 9-wave velocity along z-direction .

1 .3 .3b . Sound Boundary Condition s

Boundary conditions arise in this approach as a consequence of integrating dynamica l
equations and averaging in the vicinity of the boundary . In contrast to electromagneti c
waves, the vibrational dynamics has the exact meaning immediately for a non-homogeneou s
range including both sides of the boundary . To take into account the exact bonds betwee n
contacting nets of different nature, one has to perform integration or summing before th e
averaging procedure . In a sense, the sound BCs are a more pure phenomenon than BCs fo r
electromagnetic waves that represent correlation between averaged fields in contactin g
materials .

a. Periodic linear chain :

The illustration to the BC standards is given by linear chains with periodically
alternating fragments. Examples may be carbine fragments alternated by polyethylene o r
polyacethylene fragments .

Fig .1 .11 : One-dimensional periodical chain . Tags d, and d2 mark the length of alternating chain parts.
Brackets show the physically small ranges of integration near the boundary .

Consider the range on both sides near the boundary of two molecular chains : from to to
the end atom l of the left fragment dl and from atom r to ro on the right chain d2 (Fig.1 .11) .
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mil =-q(x, -x,.)-x(x1-x, 1 )

ml, =q (x1 -xr) - x (xr - xr+l

1 1
=

	

- x, - X
,-2 )

mxr+I -x (2xr+1 - Xr - Xr+2

---------------

mx,° = -x(2x,° - x,°+, - _, )

(1.19)

ml,° = -x(2Xr0 - xr0_1 - x,. +1 )

Summation gives:
1o

	

ro

E mx,+Em ' xi =-x(x,o -x10-i)-x'(xro -xro+1)

	

(1 .20)
i=1

	

i=r

The averaging of the finite difference expressions, on the right side of (1 .20), leads t o
continuous space derivatives . Besides, taking into account the balk wave equations, we
change the time derivatives on the left side of (1 .20 to the corresponding space derivatives .

mv2
a2 <x>+c,m'v'2 a 2 <2> =-

x(a<x>) +x , ( a<x> )
Er

	

1 .2 1
7 _,0

	

az

	

i=r

	

az

	

az

	

az

	

°

On the left-hand side, we perform the transfer from summation to integration withi n
the same limits and after the cancellation of end derivatives we get the exact BC ,

mV2 (a<x> )1 - m- v-2 (a<x>
(1 .22))r

a

	

az

	

a

	

az

where a and a are lattice constants on both sides of the boundary .
(1.23) gives the first of two BCs for near itinerant ranges on both sides of the boundary

between chains of two types .

x _ a _ <x> -	 =x + a < x> +

az

	

az
<x> - =<x> +

(1.23

Another condition arises from the continuity of displacement <x> during the wave
transition through the boundary .The first BC expression is a kind of material correlatio n
like in the case of electromagnetic waves (EMW) in a medium .
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An essential difference arises between sound waves and EMW when we begi n
considering the free edge of the molecular net . Sound waves are principally absent in th e
surrounding empty space . This leads to a special case of end boundary equations .

( a<x >

aZ

	

)1,r = 0

	

(1 .24)

Besides, in the EMW case, there is no need for a transfer from discreet equations to
continuous ones due to the fact that the classical electromagnetic field is principally a
continuous phenomenon.

b. Honeycomb lattice:

BCs in a honeycomb lattice may be obtained in an integral procedure similar to tha t
considered above for a ID periodical chain. The operation uses a substantially smal l
summation range . The notion of an infinitely small range is a corner-stone of th e
electromagnetic theory in condensed matter . Its size (1-100nm) determines the size of a
conventional point of continuous medium containing electromagnetic field . It is the same fo r
the acoustics of hypersound extending in molecular nets where this has to be introduced o n
account of the reduced dimensionality and mechanical nature of sound waves . The left side o f
this interval may be active for hypersound, but in both cases the physically small elemen t
must contain many atoms. The summation of dynamical equations inside the small range o n
both sides near the boundary gives,

E mxiJ +

	

(xiO
J -

	

j)

	

` xro, j - Xro+1, I

J =do i=lo

	

J =do i=r

	

J =do

	

l=do

ro

-0 .25xE (xi „) - xt,uo+1) - O.25x~ `xi,uo - xr,uo+ 1

i=1o

	

,= r

-0.25xI (Xi,do - Xi,do 1 )- O .25x (Xi d o - Xi,do 1 )

EA, i=r

(1.25)

The parameters X-bar and m-bar belong to the right-hand material . The averaging an d
transfer to continuous forms of derivatives and sums give :
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(1.26)

Here So marks the half-area of left material elementary cell . Taking into account th e
wave equation (1 .14) connecting time and spatial second derivatives, we have for the left sid e
of (1 .26) ,

VZ m
fuo dy (a<x>)r_(a<x>) +Vy m Jb°dz ( a<x> ) u _(a<x>~

d
so J d°

	

az
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ay
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m J u0 , (
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ay
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(1 .27)

Using explicit expressions for V and So , we may cancel edge z-derivatives in !o and ro

points of (1 .26) and (1 .27) after substituting the left part of (1 .26) by the expression in (1 .27) .
Due to the fact that the boundary, in this case, is situated perpendicular to the z-axes an d
taking into account the limits to -l, ro --> r, do -► uo, we obtain the boundary condition of th e
type in (1 .22) :

-0 .25x

mV 2 a<x> mV 2 ( a<x>
(1.28))r

So

	

az

	

So

	

a,

If the boundary is situated perpendicular to the y-axes (armchair-type boundary), the n
the expressions for V y and So allow cancellation of the edge y-derivatives along the uo and d o
lines in (1 .26) and the boundary condition takes the form

(1.29)

(1.29) represents material correlation between contacting media . The kinematic part o f
the BC is similar to the zigzag type of boundary for the continuity of the displacement <r >
when the wave transits through the boundary (see (1 .23)) . It should be noted that exact

mV2 a<x

	

mV 2 a< x
S0v

	

ay
)u -

soy ( ay )
d
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cancellations during the derivation of the BC in the integral procedure performed above is a
manifestation of the united nature of both itinerant 2D wave equation and boundar y
condition procedures . Contrary to electromagnetic waves where BCs are derived from th e
integral form of Maxwell equations, the analogous integral form of atomic dynamic s
equations are not very popular. Another significant difference with obtaining EM W
boundary conditions consists of the direct presence of elementary cell parameters in materia l
BCs ((1.22), (1 .28) and (1.29)) and the atomic bonds elasticity .

1 .3 .3c. The Hvpersound Frequency Bands in Periodic Molecular Net s

The hypersound wave of frequency w is described by two amplitudes inside each ne t
band.

	

x >= A e
iwt+ik,z+ik y y + Be iwt-ik z z+ik,, y

	

(1.30)

There exist two z-projections of the wave vector k in a periodic binary molecular net o r
linear chain depending on the hypersound velocities in the separated materials .

The system of BC equations is described by the matrix presented in Table 2 . The
intrinsic problem for hypersound eigenstates when external sources are absent and th e
system is isolated from another sound conductor may be solved analytically as in the case o f
EMW in layered structures [11, 121 .

B A' 1 B ' A2 B2 A' 2 B'2 A B'-1 AN BN A

Note : Dotted lines show the minorµ that is matrix element A l p

Table 2 : The matrix of boundary condition equation s
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The generalized dispersion equation is represented in row-matrix-column productio n

(Z,,-Y,)A"
Yr

=0~ A= p v
)

Zr

	

a, fl

where n=N-1 ; matrix elements p, v and 2 are minors of the dynamical matrix (Tab .2) ,
index / corresponds to the left and index r corresponds to the right end of the net . The matrix
A describing the lattice period in turn, is the product of each material matrix A =A I A2. The
matrix elements for the first instance are as follows :

= fti = -2ixkk az cos kz d, ; v, = -2i(xk_a: )2 sin k_d, ; /1, = 2i sin k_dl

Z, = cos kzd, ; Zr = - cos kzd2 ; Yr = -zkZaa sin kcd2

	

(1.32)

The n-degree for transfer matrix A is found by canonical transformation, 0
diagonalizing the matrix A .

x6_1 =

	

x11

	

21 ,
D = det(O)- 1

x12 x2 2

An - 1 X11 X jin - x12x21 f2 "

D

	

n

	

n

	

{' n
x22x12 (finJ 1 - f2 )

	

x11 x22f2 - x 12x21 3 1 1

where icy are elements of matrix A eigenvectors :

		

; = (xl l , x 12 ) and
'
X

2
= (x12 , x22 )

x11 =x21 = v ; x12 = JI -p , x22 = fz -p

The eigenvalues fl , f2 are,

f,2 (p +) )/2+_J((f2-fc)/2)2+2v

	

(1 .34)

Taking into account (1 .32)-(1.34) and (1 .31), we obtain a generalized dispersio n
equation for hypersound in periodic structures, describing sound wave frequencies and typ e
of state: local or band.

1 " ( Yrx22 - ZrX21 )(Z/X
I,
- YX12) - J 2 n (Yrxl2 - Zr XI I)(ZI X21 - )X22 ) = 0

	

(1.35)

(1.31)

xl1 x21(f2" - J1 " )

(1 .33)
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Extended band states exist in the frequency range with a negative value o f
discriminant in f or f2. In this case, there are two parts on the left side of (1 .35) which are
conjugated and the partial dispersion equation for band states takes the for m

2 s iv n(nro+col +tor )= 0

where n*, ?I and cp, are complex phases of three multipliers in the first term of (1 .35) . A
positive discriminant corresponds to frequency gaps. The result of band calculations usin g
(1 .35) is presented in Fig.4 for a 16-periodic carbine-polyethylene linear chain C-CH2 .

The frequency is normalized .

(1.36)

0 .0e

0 .05

O
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Fig.1 .13: One-dimensional 16-periodic elastic chain carbon-CH 2. Frequency-size diagram .
d1 /do gives the dimensionless length of the "1-material" fragment, d 2 =80do ,
do = 0 .13nm is the accepted length unity (for normalizing) and coo =20 .48 THz is the
accepted frequency unity .

A value of wo = 20 .48 THz was obtained using the elasticity coefficient of the carbon-
carbon bond x =330 N/m : 0)0 = (x/m) "2. The z-wave velocity of sound in pure 2D graphen e
sheet or tubulene is V0=16730m/s . The velocity of sound in a hydrogenised graphene sheet is
supposedly 7 .5% less due to the bigger site mass . Characteristic frequencies are of the orde r
of terahertz for chosen fragment sizes of the order a ten nanometers . If the fragments of
chains that are in contact are taken to be near hundreds (10 2) nanometers one may observ e
the same picture in frequency range but ten times lesser.

Calculations undertaken for different frequency and size scales gave very hig h
similarity in the obtained band pictures at scale transformation w->cw, d, ,d 2 -+ d 1 /c,d2/c.
With increasing frequency, the bands and gaps became smaller and the slopes of the line s
increase. Each frequency band contains the number of states (modes) that coincides with th e
number of periods in the structure. Only the lower band consists of one less state due to th e
absence of the trivial (zero-frequency) solution of (1 .35). The width of the gap depends on the
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difference between relations X/m for contacting chains and it becomes approximately equal t o
the band width at m,z'6m2 .

In two-dimensional systems consisting of alternating flat or tube fragments of differen t
kinds, the hexagonal lattices have a new parameter - the incidence angle of the hypersoun d
wave. Standing waves existing in the isolated periodical net depend on the direction of th e
wave vector. Due to the principal anisotropy of the propagation of z-waves in the hexagonal
lattice, the constant velocities in the z- and y-directions are different. Therefore, the wave
vector depends on the angle 0 of wave propagation.

co

jjV2 cos2 B+Vy sin 2 8
(1.37)k =

The same expression exists for the second material, for which the analogous notation s
are 0-bar and V-bar. The Snellius-Descartes law k, = ky , gives for transition from medium- 1

wave to medium-2 wave.

k Vy Z
Vol t +ky(Vz 2 -

V
2 )

	

(1 .38)

Fig.1 .14: Two-dimensional flat 14-period elastic graphene-CH 2 net angular-frequenc y
diagram . Calculated by Egtns.1 .35 and 1 .36 ; d 1=100do, d 2 =200do, w = (0,0 .1)mo .

The result of calculations by (1 .36) for a 2D 14-periodic flat graphene-graphene o r
closed tube-tube system is presented in Fig .1 .14. Accepted unities are coo =20 .48 THz and
z =330 N/m for both media. The z-wave velocity of sound in medium-2 was taken to be
1 .573 V0 and Vz 1 .388 Vo in the acoustically less dense medium . Characteristic frequencies are
of the order of teraherzs . The scale transformation co-4cw, d 1 , d2 -+ dac, d2/c does not change
the system band structure in the 2D case either . The number of modes inside each frequency
band coincides with the number of periods in the structure .

o .crs
mice0

c, .~ o
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Fig .1 .15: Two-dimensional flat 12-period elastic graphene-Si net. Calculated by (26), (27) angular-
frequency diagram : d 1 =100do, d2 =200do, w = (0,0.1)wo

The width of the gaps depend directly on the difference between X/m and X /iii . This
property and band structure may be illustrated by an imaginary system - acoustic crysta l
with sound velocities differed four times : V. =1 .53V, (Fig.1.15). In Fig .1 .14, we see that bot h
bandwidth and gap width are almost regular at small incidence angles . Increasing the
frequency leads to bands touching one another and splitting again . A similar phenomeno n
was observed in ID photonic crystals [11, 14] for electromagnetic field structure .

The whole intrinsic reflection range occurs in periodic systems due to the difference i n
wave velocities of different materials . Equation 1 .38 illustrates this when w2 = ky2 Vy and the

formula gives unity. Then the angle of whole reflection in the acoustically less dense firs t
medium is determined by the expression ,

Sin em =	
VZ

Jv2 +V2 v2

Waves from medium-1 that have the incidence angle bigger than 9max, lose extending
character and become damping after the transfer into the acoustically less dense medium-2 .
Wave vectors become complex kt -* ik2 and trigonometric functions in (1 .32) become
hyperbolic . In the case under study, O. equals 1 .22. The upper part of the frequency-angle
diagram was calculated by (1 .35 over a wide frequency range. The obtained results show that
hypersound bands passing into the whole reflection range degenerate into narrow line s
separated by relatively wide gaps .

It is worthwhile to note a difference between sound waves and EM waves in periodi c
structures that appears in the immediate vicinity of the BC - the boundary microscopi c
structure parameters in case of hypersound. The other circumstance is the principa l
presence of anisotropy in the sound wave equation for all vibration branches and all lattic e
types . In a certain sense, the wave mechanics of hypersound is the theory of spatiall y
dispersed waves in anisotropic media 115] . Another peculiar property of sound waves i n

(1 .39)
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separated structures is the absence of exit waves when all solutions have the characteristic s
of standing waves.

1 .3.3d. Summary

The developed simple model of vibrational dynamics of "bulk" flat and closed carbo n
and boron-nitride (BN) nanostructures allows immediate transition to the boundary
condition problem for sound of small wavelengths in tailored nets . As for the existence of fla t
carbon or BN systems, we predict that they are geometrically stable and may bridge th e
inter-electrode space in a strong external electric field . The reason is that negative charging
accompanies the process of structure adsorption onto the cathode surface . The affinity
electrons captured by the net may prevent its rolling up . The linear approximation used her e
gives a possibility to consider the vibrations of teraherz frequencies in low-dimensiona l
molecular nets separate from other types of sound . All vibrational branches, z, p and p, obey
BC of the same view. The first two branches are mutually complementary for zigzag an d
armchair nanotubes [13, 161 . The third branch, called the radial mode p, is a slow elasti c
wave compared with other branches. A bandwidth value of phase velocity Vp = a•z1 /,c, found
from radial frequency, is more than twenty times less (0 .85km/s) than for the z-branch . Th e
radial branch of vibrations plays a main role in heat transport but does not participate i n
sound energy transport .

Hypersound accompanies fast processes that occur in molecular nets during the passin g
of an electric current - the capture of an electron from the external medium, interaction wit h
high energy particles and photons . On the other hand, sound irradiation in such processes
may be used as the grounds for particle detecting. The periodical structures considered
possess non-trivial frequency band structure for hypersound that allows us to raise th e
sensitivity of detection . Comparatively slow processes of adsorption also influence th e
hypersound band structure because adsorption bonds modify host atomic dynamics . The
possible adsorption manifestation is the appearance of local states accompanied by a shap e
transformation of bands. If the adsorption occurs in a mixed gaseous media, each of the ga s
components matches the individual kind of local hypersound states . This may serve as a tag
for sensor devices.

1 .3 .4 . Conclusion s

• The PQDM proposed is able to describe complex interdependent phenomena i n
open and closed molecular nets : phonon structure, phonon-phonon interaction, statistics ,
kinetics and irradiation .

• Our arguments based on PQDM put in the forefront the eigenstates of weakl y
bounded captured phonons participating in heat energy transport through the molecula r
bridges.

• Our theoretical approach explains the nature of extremely good thermal
conductivity in carbon and carbon-like materials by the existence of the soft vibratio n
branch (low frequency p-branch of phonons with high DOS at thermal energies )
accompanied by structure hardness (high frequency (p- and z-branches) providing larg e
mean free path for phonons. We conclude that the radial mode contribution to heat transfe r
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is dominating in the temperature interval under consideration with the supposition that th e
phonon-phonon interaction constant Ga participating in the end atoms constants Go does no t
depend on the phonon type (p, (p or z) . Then, p-vibrations essentially prevail due to the larg e
density of states in narrow low-frequency p-band compared with the DOS for (p- and z-
vibrations. So, at actual temperatures p-branch of phonons determines heat propagation
through the single-walled nanotube.

• Our results are in accordance with experiments for suspensions by David Cahil l
et .al (Letters, (Oct . 2003)

If we add new layers or new walls to single-walled NT, it makes the radial p-branch o f
vibrations harder (see Fig.1 .5) . This causes the sharp decrease in phonon density of states a t
the same phonon mean free path . The phonons leave the active thermal zone and hea t
conductivity decreases . Therefore, atomic monolayers and isolated single-walled nanotube s
have to be the best thermal conductors . If we unite SWNT into the tight bundles, the radia l
mode quenches due to new inter-tube bonds arising . PQDM approach predicts the sufficien t
worsening of thermal conductivity in SWNT tight bundles comparared with free SWNT. The
method of thermal conductivity enhancement in this case is "dissolving" of inter-tubes bonds
and turning out the tight bundles into the system of almost free tubes .

Intercalation may be a good way to do this "dissolving" of existing Van der Waals
interaction inside bundles. From F.R.Gamble et .al . (Science, 168,568(1970)), the distance
between atomic layers increases more than ten times after intercalation by organi c
molecules . For our case it is enough to increase inter-SWNT distances three or more time s
and we will obtain a really significant increase in thermal conductivity .

Our proposition is to modify the experimental technique of preparing NT bundles an d
accompany it by intercalation . Intercalation conserves the large density of states (DOS) o f
acoustic (radial) phonons in the actual temperature range of frequencies . Our results show
that the dominating contribution is from radial (breathing and bending) vibrational degree s
of freedoms. Maybe only bending modes are important it is not possible to tell with certaint y
because all the degrees are present in a common sum . This we will hopefully clarify soon.

Fig.1 .16: A nanotube bundle intercalated by organic molecules or nanoparticles . Intercalation conserves big
acoustic (radial) phonon DOS in actual temperature range of frequencies . The distance in 10 or more
Angstroms will be enough to switch on radial acoustic phonons for thermal conductivit y
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We also considered temperature dependencies for thermal coefficient in the entire
temperature range and investigate size effects for graphene and tubulene bridges .We studied
the transfer of vibration waves through the contact of differing carbon nets and nanomete r
sound wave interference in periodically alternating 1D or 2D molecular nets of two types .
Boundary conditions for hypersound in tailored molecular nets are obtained ab initio by an
averaging procedure . The intrinsic problem of vibron egenstates is calculated for carbon net
periodic structures . It is shown that hypersound standing wave frequencies are grouped int o
typical bands divided by frequency gaps. The whole intrinsic reflection effects are
considered. In both cases the boundaries between cross-linked fragments lay in the plan e
perpendicular to z-axes.
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Chapter 2 : SYNTHESIS OF NANOSTRUCTURE S

2.1

	

Synthesis of Zeolite Encapsulated Nanotube s

Considerable progress has been made in the synthesis of multi-walled and single-walle d
carbon nanotubes (SWCNT) by catalytic chemical vapor deposition (CVD) techniques .
However, a typical preparation may result in a complex mixture of nanotube sizes and types .
Between 1 and 3 nm in diameter there are 403 possible structures alone . To prepare one siz e
and a single type of carbon nanotube remains a challenge . There are only 3 possible
structures ((5,0), (4,2), (3,3)) for the 0 .40 ±0.01 SWCNT, compared with the 403. To prepare
such small diameter SWCNTs, one might employ a matrix to control the size during
synthesis . It was reported that mono-sized (0 .4nm) single-wall carbon nanotubes (SWCNTs )
can be formed in the channels of large single crystal AIPO 4-5 by pyrolysis of the organi c
template, tripropylamine (TPA), without any other external carbon source [Tang et al, Appl .
Phys. Lett ., 73 (1998), 22871 .

We have now prepared single-wall carbon nanotubes in the channels of UTD-1, UTD -
18 and UTD-12 (shown below) which are structurally related zeolites having one-dimensional
channels that run in parallel . All of these zeolites are made using various cobalticinium ions .
The thermal decomposition of these organometallic templates results in cobalt catalyst a s
well as a carbon source for making carbon nanotubes . The dimensions of the pores dictate
the size of the resulting nanotubes such that we can systematically vary the CNT diameter by
using the 10, 12 or 14 MR structures .

Fig. 2.1: 10, 12 or 14 MR structures

Fig. 2.2 shows the typical Raman spectra of the as synthesized UTD-1 (bottom - black)
and the SWCNTs recovered after HF treatment of the UTD-1 crystals (top - purple) . The
Raman spectrum of the as synthesized UTD-1 shows characteristic Raman-active modes o f
CH3 symmetric stretching (2912 cm-'), the CH3 anti-symmetric deformation (1430cm-'), C=C
stretching (1650 cm -I) and the symmetric metal-ring stretching vibration (365cm -' ) o f
Cp*2Co+ molecules. When the sample is pyrolyzed at 800°C for 5 hrs and then HF treated,
new Raman peaks appeared at 1600 cm and 432 cm-' (shown in Figure 2 top purple) . The
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strongest low-frequency Raman mode at 432 cm-' is expected to be the radial breathing A i g
mode. The radial breathing Ale mode is not sensitive to nanotube structure but to th e
nanotube radius . The observed frequency of 432 cm-' indicates the radius of the carbo n
nanotube is 0 .54 nm.
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Fig.2 .2: typical Raman spectra of as synthesized UTD-1 and SWCNTs recovered after H F
treatment of the UTD-1 crystal s

Fig .2 .3 : SEM image of a SWCNT obtained after HF treatment
of calcined UTD- 1

Fig. 2.3 shows the SEM image of a SWCNT obtained after HF treatment of calcine d
UTD-1. It shows the size of the carbon nanotube is less than 1 nm and at least 500nm long ,
consistent with the Raman spectrum . The SEM results also indicate that the SWCNTs
prepared in the UTD-1 channels are stable without the silica matrix . A high resolution TEM
image of the SWCNTs recovered from UTD-1 is shown in Fig .2.5. From this image a n
estimate of the nanotube diameter is -0 .5nm. The exact type of carbon nanotube prepared i n
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UTD-1 is uncertain but possible nanotubes might be the (4,4)-0 .54nm, (7,0)-5 .5nm and th e
(5,3)-0.55nm.

Zeolite UTD-18 is structurally related to SSZ-31 (polymoph C) which is comprised o f
elliptical 12 MR pores with dimensions of 8 .6 x 5.7 A. Fig. 2.4 shows the typical Rama n
spectra of the as synthesized UTD-18 (bottom - black) and the SWCNTs recovered after H F
treatment of UTD-18 (top - purple). The Raman spectrum of the as synthesized UTD-1 8
shows characteristic Raman-active modes of C=C stretching (1650 cm -I ), the CH3 anti-
symmetric deformation (1480 cm-1), CH 2 wag (1235 cm-l) and twist (1211 cm -l ), C-H in phas e
bending (1052 cm-') and out-of-plane bending (849 cm -1) and the symmetric metal-rin g
stretching vibration (332 cm-1 ) of the (EtCp)2Co+ template molecules . When the zeolite i s
heated at 800°C for 5 hrs followed by HF treatment, new Raman peaks appear at 1606 cm - '
and 445 cm -' (shown in Fig.2.7 top purple). The strongest low-frequency Raman mode at 44 5
cm ' is expected to be the radial breathing Ai g mode. The observed frequency of 445 cm - '
indicates the radius of the carbon nanotube is -0 .52 nm. The higher frequency radia l
breathing mode and smaller SWCNT diameter compared with UTD-1 is consistent with th e
smaller pore size of UTD-18 . Fig .2.6 shows the SWNTs recovered from UTD-18 .
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Fig.2 .4: Typical Raman spectra of the as synthesized UTD-18 (black) and the SWCNTs recovere d
after HF treatment of UTD-18 (purple)
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Fig .2.6: SWNTs recovered from UTD-1 8

Zeolite UTD-12, closely related to ZSM-48, possesses non-interpenetrating linea r
0

channels defined by 10 membered rings having dimensions of 5.3 x 5.6 A. Fig. 2.7 shows the
typical Raman spectra of as synthesized UTD-12 (bottom - black) and the SWCNTs
recovered from UTD-12 after HF treatment (top - purple) . The Raman spectrum of the as
synthesized UTD-12 shows the characteristic Raman-active modes of C-C stretchin g
(1421cm-l), the C-C ring breath (1113cm" l), C-H in-phase bending (1069cm -l ) and C-H out -
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of-plane bending (849cm"' ), the symmetric metal-ring vibration (318cm -' ) and the ring
deformation (385cm " ' ) of the Cp2Co+ template molecules [30]. When the sample is pyrolyzed
at 800°C for 5 hrs followed by HF treatment, new Raman peaks appeared at 1597cm-' and
559cm'' (shown in Fig.2.7 top purple). The strongest low-frequency Raman mode at 559cm " '
is expected to be the radial breathing A ig mode. The observed frequency of 559cm" ' indicates
the radius of the carbon nanotube is 0.41 nm. This could very well be the smallest carbon
nanotube ever made .
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Fig.2.7 typical Raman spectra of as synthesized UTD-12 (black) and the SWCNTs recovered fro m
UTD-12 after HF treatment (purple)
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CNTs this small may be metallic and superconducting . Preliminary magneti c
susceptibility xT-dependence measurement of the UTD-12 (with SWCNTs) after H F
treatment is shown below. Some of the unusual magnetic properties of the SWCNTs obtained



in the UTD-12 channels may be due to residual Co. However, there may be some evidence o f
superconductivity .
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Publications

Deng, S . ; Dalton, A .; Terasaki, O .; Balkus, Jr ., K.J., "Carbon Nanotubes Synthesized
in Zeolites UTD-1, UTD-18 and UTD-12" Proc. 14th Int. Zeolite Conf. 2004, 903-910

Deng, S. ; Dalton, A .; Terasaki, O.; Balkus, Jr., K.J., "Carbon Nanotubes
Synthesized in Zeolites UTD-1, UTD-18 and UTD-12" Stud. Surf. Sci. Catal. 2004, 154.

An additional paper incorporating magnetic susceptibility data and synthesi s
variations is possible.

Presentations

1 4 th International . Zeolite Conferenc e

2003 SPRING Conference
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2.2

	

Synthesis of Conjugated Polymer-CNT Complexe s

Poor heat dissipation in organic and polymeric electronic devices is a key problem that limit s
their performance at high current loading. It is known that addition of quite small amount s
of nanotubes can improve the performance of organic devices, apparently due to improve d
heat dissipation via the nanotube component .

Various CNT-CNT interactions that can compromise the spectacular thermal conductivit y
properties of individual CNTs are shown in Fig. 2.10(a). The focus of this effort was to create
new types of donor (acceptor) polymers, which could provide better unbundling of CNTs
(Fig. 2.10(b)) to enhance dissipation of the heat generated in polymeric devices such a s
OLEDs or solar cells .

(a)

	

(b )

Fig . 2 .10 : Representative CNT-CNT interactions that compromise high thermal conductivity of CNTs (a) ,
and reduction of these effects due to unbundling (b) .

- (r.F~1 1

Fig.2 .11 : Bundle exfoliation using conjugated polymers
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Several types of debundling polymer systems are known . Fig. 2.11 shows that CNTs can b e
effectively debundled using a phenylene-vinylene (PPV) conjugated polymer . Conjugated
polymers (CP) afford the additional opportunity to introduce charge transfer to enhance CP-
CNT interactions that can be "tuned" by polymer design.

Several PPV-derivatives were synthesized to determine their abilities to debundl e
CNTs with the goal toward enhancing thermal conductivities in CP-CNT composites. The
well-studied MEH-PPV was prepared according to literature procedures and used as a
reference material for the composites . The molecular weights of the samples used wer e
292,000 (Mn) with a polydispersity of 1 .04 and 281,000 (Mn) with a polydispersity of <1 .2 .

BEH-PPV MEH-PPVBEHM-PPV

Bis-ethylhexyloxy-PPV precurso r
Synthesi s

O H

OH

-(CH2 0)-
HBr/HOAc

EH

OEH OEH

BEH-PPV precursor monomer synthesi s
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Fig . 2 .1 1

The composites were prepared using the following protocol . SWNTs were added to a
solution of MEHPPV (or other CP) in THF or CHCI 3. The resulting suspension was stirre d
overnight and allowed to settle . The supernatant was then decanted and the composite fil m
was obtained by rotary-evaporation of the solvent.

Fig. 2.12: The dramatic effect of adding SWNT to MEH-PPV (or BEH-PPV) can be seen from th e
accompanying figure . The pure polymer produces clear red films while the composite films exhibit a
blue-green metallic sheen .
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Fig . 2 .14: Dispersion of 1% SWNT in MEH-PPV . Note non-uniformity

Fig. 2.15 : Dispersion of 5% SWNT in MEH-PPV . Note non-uniformity
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Fig .2 .16: Enhanced dispersion of 2% SWNT in BEHM-PPV compared to 5% MEH-PPV
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MEH-PPV Composites

MEH G̀ PPV 2% Composit e

Efficient Energy Transfer in Excited
State Indicates high wetting of polyme r
on lattice of tub e

Figure 2 .17 : Even with modest dispersion of SWNT with MEH-PPV, the nanotubes are
strongly wetted by the polymer composites as evidenced by the efficien t
energy transfer (quenching) in the excited state .

The hydrophobic SWNT mixed with MEH-PPV in chloroform solution gave rise t o
the agglomeration shown above in Fig . 2.16 (left) . Better distribution of SWNT was obtaine d
for BEHM-PPV polymer (Fig. 2.16, right) . Strong anisotropy of X(T) (Fig. 2.18) in MEH-PPV
films mixed with SWNT indicates the in-plane distribution of nanotubes along the film .
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Figure 2.18: Temperature dependence of thermal conductivity of MEH-PPV conjugated polymer reinforced b y
2% SWNT. Open circles shows the heat flow along the film and solid circle corresponded to th e
thermal conductivity perpendicular to the film surface .
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The concentration dependence of the thermal conductivity perpendicular to the
MEH-PPV film surface is shown below (Figure 2 .19). The considerable enhancement of th e
thermal conductivity is much below expectations, however, perhaps because of poo r
distribution of SWNT in MEH-PPV matrix .
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Fig . 2 .19: Concentration dependence of thermal conductivity of MEH-PPV + SWNT composite. Insert
shows the I-V curve for MEH-PPV +2% SWNT composite .

The high frequency dependence of the electrical conductivity shown in the inser t
indicates the non-ohmic interconnection between carbon nanotubes . The agglomeration an d
non-ohmic contacts are the main reasons causing the low thermal conductivity of the studie d
composites .
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Chapter 3 : CHARACTERIZATION AND OPTIMIZATION OF PHONON SPECTRA ,
THERMAL CONDUCTIVITY AND SUPERCONDUCTIVIT Y

3.1 . Thermal Conductivity Measurements on Nanocomposites with CNT s

3.1 .1 . Comparative method in PPMS

To eliminate the heat losses through lead wires the comparative method was used fo r
thermal conductivity measurements of thin CNT fibers and films . The PPMS (Quantum
Design) Thermal Transport circuit was modified for the comparative method as shown in th e
schematic diagram below (Fig .3.1) .

Thermal contact

Heater

Nickel standard
sample

Sample

	

Suik

Fig .3 .1 : Schematic diagram of sample connection for comparativ e
measurement of thermal conductivity using the nickel standard sample .

This method is a variation of the methodology commonly known as the cut-ba r
technique. In the cut-bar technique, a specimen of unknown thermal conductivity i s
sandwiched between two pieces of material with known thermal conductivity using a therma l
grease and a pliable metal foil to eliminate interfacial thermal contact resistance between th e
materials . Thermocouples placed along the lengths of the three material pieces yiel d
information on the rate of heat flow through the two reference-material sections of know n
conductivity. The heat-flow rate can then be used to determine thermal conductivity of th e
unknown specimen using the one-dimensional Fourier conduction equation :

Q=2.A dT/dx

	

(3 .1 )

where Q is the rate of heat flow, 2 is the thermal conductivity, A is the cross-sectional are a
through which the heat flows, and dT/dx is the temperature gradient . Experimentally, dT i s
approximated by AT, the finite temperature difference, and dx is approximated by Ax , th e
distance over which the temperature difference is measured .
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In our measurement method, only one section of known material is used . Assuming
that the heat flux through both samples and the Ni-standard is the same, the therma l
conductivity of the unknown sample, ~.s can be calculated as :

Qs = QR = )sAs (ATILS) = 2RAR(ATR /LR ) .

	

(3.2)

G= 2A/L is the sample conductance .

The thin SWNT fibers shown in Fig.3.2, in comparison with human hair, were
arranged in parallel stack to enhance the sample conductance (see Fig.3.3). The fibers wer e
glued to gold covered copper leads by silver filled epoxy H2OE (EPO-TEK) [1] . The four
probe assembly shown in Fig.3.3 .

Fig.3 .2 : Bunch of 8 fibers prepared by coagulation method compared with human hair (vertical) . The
PVA polymer concentration in bunch is 35%

1W 111 1
i iiiithIi

Fig.3 .3 : Four probe assembly of 16 fibers each comprising 8 fibers with 35% PVA .
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3.1 .2 . Tunable thermal conductivity in carbon nanotube pape r

Phonon transport in one-dimensional (1D) nanostructures such as carbon nanotube s
has recently received a lot of attention . The very high thermal conductivity (10,000 W/m K)
predicted theoretically for single tubes [1 .2] was not achieved experimentally . Due to the
phonon-phonon interaction between carbon nanotubes, the measured thermal conductivity
of a collection or a mat of carbon nanotubes was found to be much lower than predicted [3] .

In disordered SWNT `mat' samples, the room temperature thermal conductivity is

only 35 W/m • K [3] . However, in samples consisting of aligned SWNTs, the room -

temperature thermal conductivity normalized to crystalline nanotube arrangement is abov e
200 W/m K [4]. On the other hand, the thermal conductivity of a 14 nm diameter multiwal l
carbon nanotube (MWNT) measured by a microfabricated device [5] was about 3000 W/m K
at room temperature, which is in close agreement with the prediction value [1] . However th e
T 2 temperature dependence suggests that MWNT behaves rather like a 2D system thermally.
The very important result of this work, for our investigation, is a decrease in therma l
conductivity with an increase in the number of nanotubes in the bundle : an 80 nm diameter
MWNT bundle has the thermal conductivity of about --1200W/m K, and a 200 nm diamete r
MWNT has about -300 W/m•K respectively . The decrease mentioned above, compared to
thermal conductivity in single nanotubes, is a consequence of a phonon-phonon interaction
leading to the rise of umklapp processes between interconnected nanoubes in bundles o r
mats .

In this part of the project, we will show that charge injection in carbon nanotub e
bundles in bucky paper will decrease the phonon-phonon interaction between carbo n
nanotubes by increasing the nanotube separation as was predicted in theoretical part 1 .

3.1.2a Experiment

1.

	

Techniques

To measure the change in thermal conductivity, the laser flash method was chosen to
measure the thermal diffusivity along a carbon nanotube paper . Thermal diffusivity D relate

to the thermal conductivity A by a simple equation,
A = p . G .D,

	

(3.3)
where p is the density and C, is the heat capacity .
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The design of laser flash method is very appropriate for in situ measurements and D i s
the most sensitive parameter, in (3.3, to structural changes in medium with low heat capacity
and density . A schematic view of the laser flash method used in this study is shown in Fig.
3.4 .

A 135 mW IQ series laser module from Power Technology Inc., operated togethe r
with a build-in modulator or chopper (model SR540 with Chopper Controller), radiate a 2
mm diameter modulated beam with 830 nm wavelength . The laser beam is focused onto th e
sample with 50 mm focal length lens (or cylindrical lens for wide strip) . The sample is
mounted between two gold standoffs on a ceramic sink. The heated spot is adjustable so that
it can be made occur at any position on the front surface of the prolonged specimen by usin g
three-axis translation stages to move the sample holder (or the vacuum cryostat) togethe r
with the specimen. The periodic heating technique can provide two independent methods :
frequency-variation method when the position of the heated spot is fixed just opposite to th e
sensing point and only the modulation frequency is changed and distance-variation method
when the modulation frequency is fixed and the distance between the heated spot and th e
sensing point is changed. In the present study we are using distance-variation method .

Sample 	T I X
L

Laser

	-t-	 r
Function
Generator

f11

Chopper
Thermo couple

Preamp.

Digital
osdioscope

Lock-in
amplifie r

Fig .3.4: The instrumentation of laser flash technique used to measure the thermal diffusivity of SWN T
bucky paper .

The measurements are made by changing the distance x between the fixe d
thermocouple tip and the laser spot in stationary conditions . This means that each
measurement is done when the temperature distribution has reached its steady state and n o
dynamical problems arise . In our case, because of very thin and narrow bucky paper stri p
and very sharp thermocouple tip (d<10µm), the relaxation time was less then Is. To reduce
the thermal inertia of thermocouple we used only one (constantan) wire with additiona l
chemical treatment. The tip of 75µm constantan wire was etched by 50% HNO 3 water

94



solution by dipping 1 mm end in solution for 1 min . The resulted tip diameter was less the n
10pm. The other wire of thermocouple is the studied carbon nanotube strip .

The thermoelectrical signal from thermocouple constantan/carbon nanotube i s
amplified with Tektronix differential preamplifier ADA400A with tunable band . Then the
resulted signal compared with reference signal from Agilent functional generator 33220A t o
obtain the phase delay between two periodic signals with the same frequency : heat sourc e
signal modulated with generator 33220A and signal of thermocouple tip outstanding o n
distance x. The phase delay is read from the display of lock-in amplifier SR540 and th e
magnitude of thermal signal from the two channel digital storage oscilloscope Tektronix TD S
2002 .

If we have a periodic point heat source which liberates heat at the rate Ioexp(iwt), the
temperature on a line at distance x from the heated point is related to the temperatur e
T(x=O) by

T(x) = T(0) . exp(-x/l1)

	

(3.4 )

where It is the thermal diffusion length. The ratio of the two moduli M of the thermal signal s
taken along the lines at x=0 and x is

M(x)/M(0) = 2 exp(-x/l,), or In M (x) = ln(2) - x.Jnf / D

	

(3.5 )
M (0)

and the phase 0 of the thermal signal on the distance x is 0 = -x(n f/D) II'2 , where f is the
frequency of modulation of the laser beam intensity and D is the thermal diffusivity .

The calibration on the thin gold wire using phase shift measurement via distanc e
shows very linear dependence and excellent agreement of thermal diffusivity, D=128 .9 mm2/s
with the data presented in the literature, D=130 m m2/s, [6] . However for CNT paper we hav e
to take into account the high surface area and radiation losses .

0.0 0.2 0.8 1 .o

180

130

170

160

150

140

Distance, mm

Fig .3 .5 : Phase shift of thermal signal chopped with the frequency 20 Hz as a function of offset betwee n
laser beam and thermocouple tip .

2.

	

Charge Injection
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Small diameter lithium or sodium ions seem to be ideal for ion insertion betwee n
nanotubes. 1M NaCl aqueous solution and platinum counter electrode was used to charge a
thin bucky paper strip (20x 0.5x 0.035 mm;) in cronoamperometry regime on CHI 660B
Electrochemical Station . The positive (CC) or negative (Na+) charges with current 0.1 mA
was applied to CWNT strip during lh at 0.8V. Than the sample was washed in DI water and
dried in vacuum during 4 h.

3 .

	

Results and discussio n

a. HipCO :

First, we measured the thermal diffusivity of bucky paper consisting of HipCo
SWNT. Fig.3.6 shows the phase shift of the thermal signal collected at different distances. To
make sure that dipping in electrolyte solution and washing in DI water do not change th e
thermal properties of bucky paper, we first carried out the test measurement shown by gree n
solid circles.

0 .0

	

0 .5

	

1 .0

	

1 .5

	

2 .0

	

2 .5

	

3 . 0

Distance, m m

Fig .3.6: Thermal diffusivity of bucky-paper on the base of HiPCO SWNT .

b. Magnetically aligned bucky paper :

Magnetically aligned SWNT paper was obtained from National High Magnetic Fiel d
Laboratory in Florida, USA. SWNTs prepared by laser ablation technique at 1100° C, were
purified and deposited by vacuum filtration from water suspension under high magneti c
field, 17T.

HipCO (15x0 .5 mm), prisitin e
▪ Wetted in 2M NaCl, washed D I

• Charged, Na` , Ih, 0 .8 V

• Charged overnight, Na' . 0 .8 V
Charged overnight, repeated

• Charged overnight, repeated, 10 H z
• Charged CI . 10 H z

Charged Cl . 5 Hz

1

a detne, 5 Hz
= 10.8 mm

2
/s

2

« charged Na, 5 Hz
_12 .9 m m /s

z
a charged Cl . 5 Hz =1 1 .5 m m /s

30 0

25 0

20 0

15 0

10 0

50
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To overcome the dominant role of contact resistance in SWNT bucky-paper ,
multiple attempts were made to align disordered bunches. It is supposed that increasing the
paper density (and consequently contact surface area) and increasing the number of contact s
in the alignment direction will increase the conductivity of the oriented paper significantly .
Below, in Fig.3.7, the temperature dependence of resistivity for magnetically aligned "laser "
SWNT bucky-paper is shown .

50 250 30 0

Temperature. K

o°

of

g.
T

10'.J

A

	

B
Fig.3 .7: A. The temperature dependence of conductivity of magnetically aligned SWNT bucky-paper ,

measured along and across alignment direction by four-probe method. The dimensions for sample 1 :
15x1x0 .012 mm3 , the distance between potential electrodes is 10 mm ; samples 2 and 3 have length 1 0
mm, distance between potential electrodes 8 mm .
13. The temperature dependence of conductivity along the nanotube alignment direction . The fitting by
Luttinger liquid and VRH models shown by dashed and dot lines, respectively .

Anisotropy of resistivity of Rperp/Rpar. 14 is temperature independent . R(T) curves
for samples 1 and 2 with different distance between electrodes actually have coincided .
Analysis of temperature dependence of resistivity (Rpar(T)) in the framework of VRH model
leads to following expression (see Fig.3.7 B),

R(T) = 4.5 . 10-4•exp(200/T)v2 .57

	

(3.6)

where the conductivity dimensionality has shifted toward a two-dimensional system. Such
behavior of R(T) could be explained by the increase in contact area for the aligned CNT .
However, it is important to mention that magnetically aligned samples were produced fro m
"laser" SWNT. It is recognized that "laser" SWNT is less defective .

The lowering of To and new temperature dependences of hoping conductivity, lnR
(To/T)2"5 was predicted in [23] for one-dimensional conductors with reduced concentrations of
defects [26] . Decreasing the concentration of defects, keeps the hopping mechanism in rar e
short clusters, dissolved in long channels of one-dimensional conductors . However for the
system of one-dimensional conductors, the weak excitations of the charge density now lead s
to the linear Coulomb gap with high shielding anisotropy of the Coulomb potential .

Fig.3.8 shows the thermal diffusivity measurement of magnetically aligned bucky-
paper .
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Fig.3 .8: Thermal diffusivity of magnetically aligned bucky-paper .
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3.2 . Thermal Conductivity of Thin-wall Carbon Inverse Opa l

In the last decade, a new material called photonic crystal (PC) has attracted muc h
attention from both basic and applied science viewpoint . The behavior of photons in PCs is
very much like that of electrons in semiconductors [1, 2] : the photonic band structure ma y
show forbidden gaps in which photons cannot exist. Therefore, many of the devices an d
concepts based on the band gap phenomena may be extended to PCs .

This novel concept was developed for various new applications of PCs such a s
threshold-less lasers and optical transistors [3] . However, the obstacles to obtain this kind of
PCs with a complete gap in the desired spectral region represent a big challenge . PCs can be
defined as mesoporous materials with a periodic distribution of submicrometric pores .
Mainly, there are two parameters that determine the existence of a photonic gap. First, th e
refractive index contrast, defined as the ratio between the refractive indices of the materia l
and the surrounding substance ; secondly, the filling fraction, defined as the percentage
volume occupied by the voids, is a very important parameter . Also, the topology of th e
structure will be decisive in explaining the band structure .

Among the various preparation methods of three-dimensional periodic structures, a
self-assembly method utilizing sedimentation of monodispersed nanoscale spheres is th e
simplest . Silica opal is a type of naturally occurring photonic crystal that consist of well -
ordered three dimensional arrays of SiO 2 spheres, which have diameters in the wavelength
range of visible light [4] . As a consequence of periodicity they show opalescence colors that
come from Bragg diffraction by the periodic distribution of particles . Bragg diffraction
constitutes the fingerprint of photonic band gap (PBG) properties. However, theory predicts
that inverse opals would show much better PBG properties than direct opals. Inverse opal s
that can be regarded as the negative replica of opals, have a well-ordered array of
nanometric spherical cavities surrounded by a high refractive index material, in which bot h
the cavities and the high refractive material is connected throughout the structure . To
achieve a complete PBG, many laboratories are trying to fabricate high quality inverse opal s
with high contrast and filling factor [5-10] .

At the same time, the unusual mesoscopic structure of the synthetic opal attracted a
large effort to improve the efficiency of thermoelectric materials [11, 12] . A good
thermoelectric material has low thermal conductivity K, high electrical conductivity 6, and a
high Seebeck coefficient, in order to maximize the thermoelectric figure of merit ,

Z= aS2/x

	

(3.7)

where Z has units of inverse absolute temperature and is generally quoted as ZT.
For more than 40 years, the search for better thermoelectrics has not provided a

material with ZT significantly larger than one . ZT of about four would make thermoelectri c
coolers able to compete with gas-compression technology . Assuming that the Seebec k
coefficient in opal where silicon spheres replaced by thermoelectric materials will no t
affected by the opal structure, if the thermal conductivity is reduced much more than th e
electrical conductivity, the opals could be useful thermoelectric materials . Unfortunatel y
many experimental works [7,13,14] and theoretical calculations [15] show that the overal l
reduction for electrons and phonons in synthetic fcc opal structures will be the same.
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On the other hand such porous and highly ordered materials as inverse opals open up
new opportunities for further development of multifunctional nanodevices . Particularly, a t
the low filling factor usually achieving by infiltration of pores by sol-gel route or Chemica l
Vapor Deposition (CVD), inverse opals have two independent nets of pores divided by a very
thin shell : one resulting from removing SiO 2 spheres and the other consists of octahedral an d
tetrahedral pores reduced by thin wall covered on SiO 2 spheres but still with interconnected
windows. Both nets could be tuned independently : first net by changing the SiO2 sphere size,
second net by filling factor . Moreover, at some condition they could be filled by functiona l
materials divided by shell material .

In this part of the project we study the behavior of the heat flow through thin-wal l
carbon inverse opals produced by two different methods.

3.2 .1 . Experiment

Porous silica opals were used as templates for infiltration and carbon inverse opa l
synthesis as described in detail by Zakhidov et al [7,8,16] . Briefly, the carbon inverse opal s
were fabricated by infiltrating silica opal with a phenolic resin, thermally curing this resin a t
low temperature, dissolving the SiO2 from the infiltrated opal with aqueous HF, an d
pyrolyzing the resulting phenolic inverse opal at progressively increased temperatures up to
1000"C. The graphitic carbon inverse opal was fabricated by CVD method using 1 :3 mola r
ratio of propylene and N2 as the feed gas followed by silica removal with aqueous HF .

Thermal and electrical conductivity measurements were performed using Quantu m
Design Physical Properties Measurement System (PPMS) . For these measurements for both
inverse opals two samples with different geometry (4 .5x1 .8x12 mm3 and 6.0x2.0x17 mm3) and
lead distance (6 and 10 mm) have been prepared . The gold covered copper leads were glue d
to sample by silver filled epoxy H2OE (EPO-TEK) using four-probe design : heater -
thermometer T1 - thermometer T2 - sink. To eliminate the thermal radiation "tail" in th e
thermal conductivity data, usually appearing at high temperatures, the thermal conductivity
measurements above 200 K were confirmed by comparative method involving the serie s
connection of Ni-standard and studied samples. The electrical resistivity for some of sample s
was measured by a conventional four-probe method using Agilent HP4284A milliohmmeter.
Heat capacity measurements were performed using Perkin Elmer Pyris Diamond DSC, . The
surface and fracture image of inversed opal were examined by a JSM-1500 (JEOL, Japan )
Scanning Electron Microscope (SEM) .

3.2.2 . Results and discussion

1 .

	

Structure

Fig.3.9 shows SEM images of cleft edges of (001) and (111) facet of the thin-walle d
inverse opal lattice (250 nm spheres) . For both glassy carbon inverse opal fabricated by a
phenolic route and graphitic carbon inverse opal fabricated by CVD route a highly periodi c
structure throughout the volume have been obtained. The void structure consists of an FCC
arrangement of spherical carbon shells interconnected with 12 neighboring spherical shell s
via windows, which result from the sintering process .
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Fig .3.9: The (100) and (111) planes of surface-templated inverse opal . The rough appearance of a cleaved edge
of carbon infiltrated inverse opal is due to the occurrence of fracture through hollow spheres (rathe r
than between spheres in silica opal) . The large windows interconnecting the spherical cavities are due
to the sintering of the opal template .

2 .

	

Thermal conductivity

The temperature behaviors of thermal conductivity of both inverse carbon opals ar e
almost similar: the linear increase at low temperatures shown in the insert of Fig .3.1 0
illustrates the changed slope at 20 K and the slight exponential growth above 75 K . The
difference in absolute value of about 20% obtained for the whole measured range may be
attributed to the difference in crystalline structure of the shells . The X-ray diffractio n
spectra show the higher crystallinity for CVD infiltrated samples . Moreover, SEM and TE M
electron micrographs [7] indicate that the thin wall shells consist of graphite sheets that ar e
preferentially oriented parallel to the void surface created by removal of the SiO 2 spheres.

0 .5 0

0 .3 5

0 .3 0

0 .2 5

0 .4 5

0 .40

'0

	

20

	

30

	

40

	

6 0

Temper.mm. K

e0 rc

0 .20

Temperature, K

101



Fig.3 .10: Temperature dependence of thermal conductivity of graphitic carbon (CVD) and glass y
carbon (pyrolitic amorphous carbon) inverse opals .

Effective thermal conductivity. There are a lot of approaches to calculate the therma l
conductivity of porous materials and composites using the known thermal conductivity of th e
parent material . Within a continuum description, the effective thermal conductivity of a
composite with spherical voids (d=3) or infinite cylindrical voids (d=2) and the therma l
conductivity of host material Ko can be given by the following equation [17] .

	

_	 (1 - P)X„

	

(3.8)KefJ 1+
p/(d_1 )

where p is the fractional volume of the voids often called the "porosity" .
Another equation, taking into account the thermal conductivity of the material in

pores, Kpores [18] were used in [19,20] for the FCC opal ,

	

Kett =(1-p)

	

p+p4 v,

	

(3.9)

where v = Kpores/Ko .

The continuum approach to study the effective thermal conductivity of periodi c
composites was examined by Albrecht et al [21] for a number of two-dimensional and three -
dimensional lattices.

3.

	

Porosity

To calculate the effective thermal conductivity, we have to first estimate the porosity
of the structure. The schematic representation of the face-centered cubic structure of invers e
opal is given below .

Fig .3 .11 : Schematic representation of surface-templated inverse opal.
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The volume of the FCC structure unit is V C1h . = (2 \12.R)3 = 16/2-R3, where R is SiO2

sphere radius. The unit comprises four spheres with volume Vsphere= 4- (4/3) -n-R3 = (16/3)
•n•R 3. For an opal structure we can find the commonly used filling factor F value, F = Vsphere/

V . = n/3i2 = 0.74. For surface-templated inverse opal, the cubic volume filled only with
thin shells of thickness h = R 1 -R, depends on filling conditions (Fig.3.11) .

For the sample presented in Fig.3.9, D = 250 nm, and the average layer thickness i s
h = 10 nm. The volume of an empty sphere is, (4/3)nR1 3 - (4/3)nR3 = 0.26(4/3)nR3 , where R 1

was shifted by 1.08-R, R 1 = ((R+h)/R)R = 1 .08R. The filling factor for surface-templated
inverse opal is F = 0.74.0.26 = 0 .192, and the porosity is P = 1- F = 0 .808.

In this calculation, we neglected the structure shrinkage at the first sintering which
provided the intersphere interconnection through which the SiO2 spheres were removed
after infiltration, and we neglected the volume of these circular interfaces (12 holes per eac h
sphere). Subtraction of the volume of 24 holes with average diameter 76 nm results in a
reduction of the filling factor to 0.191 . Consequently, P = 0.809.

Now we can calculate the thermal conductivity of the material of the shell (for
graphitic carbon). At room temperature (T=300 K), Keffect = 0.33 W/m•K (Fig .3.10) .
Considering that sphere voids and interstitials air filled, for (3 .9 we can write ,

K~, =

	

effe(t

=
3.95W / mK

	

(3.10)
P)(1-

	

3i z

By Albrecht approach for xpores/Ko=O (air filling) giving xeff/ K0=0.09 for thermal
conductivity of shell material, we found very close result, xo=3.67 W/m•K.

The density of measured samples is 0 .22 g/cm3. Taking into account the
porosity of the studied inverse opal structure, P=19 .1%, we calculate the density of the host
material to be p = 1 .15 g/cm3 which is twice less than the density of crystalline graphite, p c =

2.21 g/cm 3. Perhaps this difference is due to the porosity of the graphite layer and th e
extended diameter of interconnected windows appeared for the volume change at pyrolysis .

The schematic representation of graphitic shell structure in Fig .3.12 shows that fo r
materials with high anisotropy of conductivity, both electric and thermal, the conducting
path would be strongly dependent on the anisotropy factor : y= ic,, / 1 . For pyrolytic

graphite at room temperature y = 342 [22] . Heat flow from one sphere to another occurs onl y
perpendicular to graphitic layers with thermal conductivity 5.7 W/m•K. As far as heat
transferred to the surface layers of another sphere the high thermal conductivity along the
graphitic layers, 1950 W/mK, shorts the heat flow near the sphere surface preventing furthe r
penetration of heat to deeper layers . In such structures, the thermal conductivity would be
independent of the thickness of shell walls .
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Fig.3 .12: Schematic representation of heat flow through graphitic shell structure and real structure o f
interconnecting windows.

Electrical conductivity. Since graphite has a high electronic conductivity, let us
estimate the electronic contribution to the thermal conductivity using the Wiedemann-Fran z
law:

K/ 7= LT

	

(3.11 )

where L= 2.45. 10"8 W•Ohm/K 2 is Lorenz number .
The temperature dependence of specific resistivity of the studied inverse opal ,

measured by two-probe and four-probe methods, is shown in Fig .3.13. The slope of the curve
is in good agreement with the data for crystalline graphite for this temperature region [23 ]
and for carbon inverse opals with high filling factor studied in [8,24] for various hea t
treatment temperatures . However, the absolute value of resistivity for our inverse opals hea t
treated at 1000°C is much lower than those obtained in [8,24]. The anisotropy factor fo r
electrical conductivity in highly crystalline graphite is much higher than for therma l
conductivity, y e = 0.5(S2•cm) / 0 .5 . 10-3 (S2•cm) = 103 [23] . The obtained resistivity of graphiti c
inverse opal normalized to porosity is in good agreement with a resistivity of crystallin e
graphite across the graphite layers . This result shows excellent evidence that the transpor t
properties of graphitic inverse opal are determined by the tiled structure of contacted area of
the shells .

The electronic contribution to total thermal conductivity, 2e(300K) = 3.7 . 10' 3 W/m•K, is
two orders smaller than the measured value, 2(300K) = 0.33 W/m•K. However at low
temperature, T<50K, the electronic contribution to the thermal conductivity could b e
predominant .
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Fig.3 .13: Temperature dependence of resistivity for the carbon inverse opal (carbon opal replica) . The insert
shows the comparative behaviour of resistivity for studied inverse opal (open circles), phenol replic a
with high filling factor, heat treated at 830°C [24] (dash-dot line), and POCO graphite[23] .

Heat capacity. The temperature dependence of the specific heat capacity of graphiti c
inverse opal is shown in Fig.3.14. Within the measured temperature range the heat capacity
exhibits the smooth rise closely resembling the 2-3D behavior of of bulk planar graphite
(solid line) [23]. For comparison the specific heat capacity values of POCO graphite [23] was
divided to the density ratio pPOCdpinvers opal= 1.82 g/cm 3 / 0.22 g/cm3.
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Fig.3 .14: Temperature dependence of specific heat capacity, C, of graphitic inverse opal prepared by
CVD method . C,, vs T for pyrolitic POCO graphite was normalized to the density of studie d
inverse opal, (1 .82 g/cm3 / 0 .22 g/cm 3) .

3.2.3 . Conclusio n

We measured the thermal conductivity of carbon inverse opals with differen t
crystallinity of the infiltrated carbon . The obtained thermal conductivity in both samples is
extremely low, 0.33 W/m•K. The conducting path is strongly dependent on the anisotropy
factor : y= K„ / Kl . For highly crystalline pyrolytic graphite (y = 342) the heat flow from on e
spherical shell to another occurs only perpendicular to graphitic layers with therma l
conductivity 5 .7 W/m•K. These interconnecting interfaces determine the whole therma l
conductance of the system . The heat transferred to the surface layers of another sphere i s
rapidly shorted by high thermal conductivity along the graphitic layers (1950 W/m•K) thus ,
preventing the further penetration of heat to deeper layers. In such structures, the therma l
conductivity would be independent of the thickness of shell walls .

The electronic contribution to the thermal conductivity, Ke(300K) = 3.7 . 10' ; W/m•K, i s
negligible compared to the measured value, K(300K) = 0.33 W/m•K

The low thermal conductivity with an appreciably high electronic conductivit y
suggests the possible application for these materials in thermoelectric cells .
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Chapter 4: SUMMARY AND CONCLUSIONS

	

4.1

	

Summary on Carbon Nanotubes

"Modest" applications of nanotubes for thermal management (like 100-200% increase for
composites with low conductivity matrices) look quite feasible .
However, in order to evaluate prospects of more aggressive goals fully exploiting the claimed
potential, much more research work is needed to provide a firm understanding of issue s
involved. Among the problems could be :

• Details of the physics of individual tube behavior, especially the low-T regim e
• Microscopic picture of intertube/interlayer interactions and scattering
• Microscopic study of contacts with various media (leads)
• Possibility of (self-) assembly of contacts and environments that would be beneficia l

to the therm. conductivit y
• Optimization issues given the understanding achieve d

	

4 .2

	

Conclusions on Thermal Conductivity Enhancement

1. Ph-Polaritons are found to contribute to K(T) of thin films, with T-peak .
Position of T-peak depends on W op, the line width of OP and the TO-LO splitting .

2. K(T) can be 10-20 times stronger than the conventional radiative contribution to K by free
photons.

3. T-peak shifts to lowest T in microcavities (L - 1-10 mm), which can be used in cryogeni c
heat transfer .

4. To create a material with high enough polaritonic K(T) at RT, compared to the usual ,
phonon Kph one should create an organic material with OP at 1500-2000 cm-1, which ha s
large oscillator strength . In organic materials Kph is usually low (< 0 .1-1 W/mK), the
Kpol can become a main contribution .

5. One candidate for polaritonic heat pipe, can be a doped fullerene film MxC60 in which
giant oscillator strength S enhancement is found, which is quadratic in doping level
x: S -x2 .
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6. The strong dependence of Kpol(T) on S(x) leads to tunability of K(T) by charge transfe r
and thus may be used in "polariton-transistors", in which K can be amplified by chargin g
gate G.

7. Phonon-Polaritons can be used for "Polariton-lasers", which will emit monochromati c
and coherent IR radiation, due to Bose-Einstein condensation in microcavity .
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abstract

PACS numbers:

I . INTRODUCTION 0)

It is well-known that the contribution of radiativ e
transport to thermoconductivity of majority of solids i s
important only at rather high temperatures of the or-
der of a few thousands K . At much lower temperatures
the radiative transport is usually small because is smal l
the density of photon states which have an energy of th e
order of kBT . The energy of the transverse photons, re-
sponsible for the radiative transport (we assume that th e
medium is isotropic), is E(k) = hck/f, where c is th e
velocity of photon in vacuum, k is its wave vector and e is
the dielectric constant of medium . The density of states
is proportional to k'O or (for transverse photons) to
w 2 what is a smooth function of w and small for small w .

The situation changes if to take into account the de-
pendence of dielectric constant on w which may be stron g
in the region of dipole allowed resonances . In this re-
gion of spectrum the interaction of dipole active quasi -
particles (transverse optical phonons) with transvers e
photons (retardation effect) is responsible for the appear-
ance of a new quasi-particles, so called phonon-polariton s
[1,2] . For these quasi-particles most important is vicinit y
of transverse optical phonon frequency where dielectri c
constant has a resonance . The polariton dispersion in
the region of isolated resonance (a dependence of its fre-
quency on wave vector) can be found from the relation

0 I I

Wl

k

FIG. 1 :

general expression

w 2 - w2
e(w) = eb	 II
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w 2
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where wll and w1 are frequencies of longitudinal an d
transverse optical phonons . For some crystals the
transverse-longitudinal splitting A = wil - w 1 i which is
proportional to the oscillator strength at the resonanc e
frequency w1, can be rather large. For example, for
SiC crystal 4,5 w 1 =793cm -1 , al l =969 cm-1 and, thus ,
A=176cm-1 , for crystal MgO 6, where w1 =396cm-1 ,
w 11 =719cm-1 this splitting is even larger : A=323cm- 1

If we take into account the dissipation or scatterin g
of polaritons we can use for dielectric constant a more

w2 - w1 - 2iyw'

	

( 3 )

The approach to calculate the polariton heat conductiv-
ity is dependent on the relation between size of sampl e
and the length of polariton mean-free-path . If this lengt h
is larger than the sample size it is necessary to consider
polaritons in ballistical regime . If, however, the size o f
sample is large in comparison with the length of polarito n
mean-free -path we can use the same statistical rando m
walks approach which usually is in use in calculation o f
phonon heat conductivity in solids . In this note below
we consider crystals MgO and SiC at temperatur e

T 1000K. At this temperature the states of po-
laritons with energy E r-zil 0 .leV are mainly populate d
and statistical approach in calculation of polaritons hea t
conductivity can be justified because for these phonon-
polaritons in mentioned crystals a mean-free- path i s
rather small . For example, as it follows from the mea-
surements of absorption in MgO crystal[3], the absorp -
tion coefficient at temperature T 1000K changes i n
wide interval values up to 10 5 crn-1 but in all cases it i s
larger than 102 cm-1 at least in the interval of wave num-
bers 150 - 1500crn -1 (unfortunately, we have no othe r
measurements) . It means that a polariton mean-free-
pathA for these wave numbers is less than value of or-
der of

	

1 : 0 .07crra and similar situation we meet for



many another crystals as it follows from experimenta l
data on light absorption. It means that for calculation o f
polariton thermoconductivity of the sample with thick-
ness of order of 1cm we can use statistical theory takin g
into account the contribution to thermoconductivity th e
phonon-polaritons with the mean-free-path smaller tha n
the sample size . We will show that this restriction i s
important for the temperature interval where the statis-
tical theory can be used . The total thermoconductivit y
is the sum, roughly speaking, of two parts arising from
ballistical and diffusive propagation of polaritons . Thus ,
in comparison with experimental data it is necessary t o
take into account that the part of total thermoconductiv-
ity arising from statistical approach can determine only
the lower limit of its total value .

II . THERMAL CONDUCTIVITY

The thermal conductivity ~c(T) can be calculated by
the using of following well-known expression

~c(T) = E
f

C(w)v(w)A(w)dw,

	

(4 )
p

where w is the polariton frequency, C(w) is its therma l
capacity , v(w) is its the group velocity, and A(w) is it s
mean-free-path . The sum is carried out over two trans-
verse polariton polarizations p.

In order to determine ic(T) we firstly have obtained C ,
v, and A. The polaritons energy at thermal equilibriu m
can be written a s

E(w,T) fiw
exp(hw/B)T) - 1 '

where the density of states D(w) is given by

D(w)

	

4irk2 dk
	 V

- (21)3 dw .

Therefore, the thermal capacity can be written as

C(w)
= 1 dE

V dT
D(w)

	

(hw) 2 e hw/kB T

V kg T 2 (ehw/kBT - 1) 2

As the absorption is rather weak we can express the grou p
velocity as

v(w) _

The last quantity to determine is the mean free path .
Since the intensity I is proportional to the squared elec-
trical field we hav e

I'- 1E12 ti e i2kz = e i2(n ' +in " )wz/c ti e -2n "w/c = e -z/A(w )

(9)

2

thus,

A(w)
C

(10)
2wn"(w) .

Using the relation

w2

	

= (n' + in" ) 2 = E(w) = E + ie" ,

	

(11 )

and assuming weak absorption ((n" ) 2 ^ 0) one can ob-
tain

(w ll - w1)(wl - w2 )
E' (w) = c oo (1+ (12)
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n

In order to check the approximation considered here fo r
the calculation of A(w) we plot in Fig. 1 the absorbance
obtained from (11) and experimental values for the Mg O
crystal . We can notice a reasonable agreement betwee n
them .

0. 5
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1050 1000 950 900 850 800 750

Wavenumber (cm -' )

FIG . 2 : Absorption spectra of MgO. Experimental points cor-
respond to the MgO crystal at T=305 K with 0 .16 mm thick .
The dotted line just connects the points .

Grouping (8), (9), (11), and (13)-(15) and summin g
over two photon polarizations, the thermal conductivity ,
considering polaritonnic

~

resonance, becomes
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III . RESULTS AND DISCUSSION S

We have used data for SiC and MgO in order to estab-
lish a comparison with the thermal conductivity values

obtained here . The experimental data considered were :

E b = 6.7, w1 =793 cm', w il =969 cm-1 , and P=4.7 6
cm' for SiC 4 .5 , and E b = 2.96, w1=396 cm-1 , wil =71 9
cm -1 , and P=7.60 cm -1 for Mg0 6 . Experimental values

of thermal conductivity were extracted from' for SiC (p .
279) and for MgO (p . 283) .

Figure 2 presents the thermal conductivity as functio n
of temperature considering one polaritonic resonance .

Experimental data are also shown. For T > 300K, ~c(T)
behaves as k(T) 7'5 .

FIG. 3 : Thermal conductivity as function of temperature .
The lines were obtained using the expression (16) . The inset
graph is the zoom for the region 600 K< T <2200 K .

IV. CONCLUSIONS
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Abstrac t

We address a somewhat controversial question of the low-frequency dispersion of transverse acoustic (TA) modes of single -
wall carbon nanotubes by studying an empirical lattice model with a set of elastic interactions no less comprehensive than th e
frequently used force constant model . Differently from the latter, however, our approach utilizes only geometrically invariant
quantities such as variations of lengths and various angles, which makes the issue of force constant adjustment irrelevant. Al l
the salient qualitative features of vibrational spectra of arbitrary nanotubes naturally follow from the vibrational Hamiltonia n
of graphene upon its isometric mapping onto a cylindrical surface and are calculated on the same footing with graphene . We
find that the low-frequency dispersion ol'the TA modes is manifestly parabolic in agreement with the continuum analysis an d
with the earlier lattice study by Popov et al . but contrary to the conclusions of a linear dispersion reached in many other lattic e
calculations .
Csl 2004 Elsevier B .V. All rights reserved .

Vibrational spectra of individual single-wall carbon

nanotubes are of considerable interest and have bee n
studied within different frameworks such as an em-
pirical force constant model [1-4], ab initio studie s
[5,6], tight-binding molecular dynamics [7], a valenc e

force field model [8,9] and continuum mechanics [10 ,

11] . It is known that the higher-frequency part of th e
nanotube spectra is relatively well represented alread y
by the zone folding of the graphene spectrum . Th e
lower-frequency part, however, has generic features
owing to the one-dimensional character of nanotubes .
Particularly, the spectra exhibit four types of acousti c

E-mail address : yuri .gartstein@utdallas .edu (Yu .N. Gartstein) .

0375-9601/$ - see front matter © 2004 Elsevier B .V . All rights reserved.
doi :10.1016/j .phy sleta.2004.05 .006

modes with vanishing frequencies : one longitudina l
(LA), two transverse (TA) and one twisting (TW) .
The existence of these modes has to do with genera l

considerations-displacements of the tube as a whol e
along and perpendicular to its axis, and the rotation o f

the tube about the axis do not cost energy-rather than
with specific nanotube interactions . Analogous vibra-
tions were also discussed in the context of quantum
wires as dilatational, flexural and torsional modes [12] .
These modes are important contributors to the low -
temperature quantized thermal conductance of suc h
phonon waveguides [13,14] .

A more subtle question is the low-frequency dis-
persion of those acoustic modes . While LA and TW

modes clearly have a usual linear dispersion, the de-
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generate TA modes have been calculated as having
either linear [1-5,7] or parabolic [9-11] dispersion .
Although the exact dispersion law is apparently irrel-
evant for the quantized ballistic thermal conductanc e
[13,14], the parabolic dispersion would lead to a one -
dimensional singularity of the vibrational density o f
states near zero frequency and particularly results i n
a very different behavior of the low-temperature spe-
cific heat [15,16] . We believe the parabolic characte r
of the low-frequency TA mode dispersion should b e
quite generic in one-dimensional systems similarly t o
the well-known bending waves of rods [17] with wave -
lengths much longer than the transverse rod size . For
nanotubes specifically, the parabolic dependence ha s
been analytically illustrated in continuum models [10 ,
11] similar to used in the analysis of vibrations o f
elastic cylindrical shells [18,19] . A parabolic disper-
sion was also found for the lowest flexural modes o f
quantum wires [12,13], other interesting recent appli-
cations of elastic cylinder models include vibrations o f
cytoskeletal filaments and microtubules [20] .

The issue however still remains controversial for
more detailed nanotube lattice dynamics models as i s
clear from the recent analysis [4] of a modified forc e
constant model [1] yielding a linear dispersion of th e
TA mode . A linear dispersion was also apparent in
ab initio studies [5] . The main goal of this Letter (fo r
more details see [21]) is to demonstrate a manifestl y
parabolic dispersion of the low-frequency TA mode s
for arbitrary carbon nanotubes by using a model wit h
a set of elastic interactions no less comprehensive than
the force constant model but in a formulation that
naturally exploits all the invariance requirements . Our
conclusion is therefore in agreement with the earlie r
study of a lattice valence force field model by Popo v
et al . [9] that found the parabolic dispersion . We note
that Mahan and Jeon [22] have also recently argued i n
favor of that type of dispersion in a nanotube lattic e
model with fewer lattice couplings .

The frequently used force constant model [1] was
first developed for planar graphene based on the exper-
imental data for graphite and then adapted for nano -
tube geometries . Direct application of the graphene
force constant values for nanotubes is known to lea d
to some spurious results and therefore various correc-
tions [1] and adjustments [4] have been used in nano -
tube calculations. In this Letter we use another em-
pirical model, where the harmonic vibrational Hamil -

tonian of graphene is built using only rotationally
invariant quantities such as variations of bond lengths ,
interbond and dihedral angles . Such a description i s
akin in spirit to used in conformational analysis and
stereochemistry (e .g ., [23]) and in bond models for
vibrations in covalent semiconductors ([24] and ref-
erences therein) . Further mapping of the graphen e
Hamiltonian onto a cylindrical surface of the nano-
tubes then allows to derive all features of arbitrary
nanotube spectra "naturally", without any ad hoc mod-
ifications . In this regard, our approach is quite simila r
to the one used in Refs . [8,9] .

To have a comparatively comprehensive set of elas-
tic couplings, we follow [1] in considering carbon -
carbon interactions up to the fourth nearest neighbor .
The harmonic potential energy U = Ui + Uo is how-
ever expressed as a function of variations of bon d
lengths and various angles . The first term Ui would
correspond here to in-plane deformations of graphen e
and in general requires ten elastic parameters K"( :

Ui = E[K 1 (8lj+81 k)+K2&p (~ k +K33lijSl j k
(ijk )

+ K4 &Pijk( 5 lij + 8ljk)]

	

(la)

4 (il)=m
+ E E [KS Slij S lki + K6 Swwijk &Pjkl

m=3 (ijkl)

+ KT (Stpijkslkl + &Pjk! Slij)] ,

(1b)

while term U0 would describe out-of-plane graphene
distortions and needs three elastic parameters :

4 (il)=m

Uo = E

	

K g S Xijkl •

	

( 2 )
m=2 (ijkl )

The structure of Eqs . (1), (2) has a very clear geo-
metric interpretation and can be conveniently though t
of in terms of triangular plaquettes (ijk) formed by
bonds (if) and (jk) connecting nearest carbons i an d
j, and j and k, respectively. Variation of bond (if )
length is denoted Sl ij , and variation of the inter-bond
angle at the common carbon j denoted Stpijk . Corre-
spondingly, Eq. (la) completely describes the defor-
mation energy of individual plaquettes . Eqs . (lb), (2) ,
on the other hand, completely describe the interaction s
of deformations on neighboring plaquettes; specifi-
cally, (ijkl) stands for plaquettes (ijk) and (jkl) that
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Fig. 1 . Nomenclature of possible triangular plaquette pairs adjacen t
along a nearest-neighbor carbon-carbon bond . To guide the eye ,
individual adjacent plaquettes are filled with lines at differen t
angles .

are adjacent along bond (jk) . There are three differ-
ent ways to form adjacent plaquette pairs and notation
{in } = m distinguishes them by indicating that carbons
i and 1 are the mth nearest neighbors (m = 2, 3, 4), as
illustrated in Fig . 1 . (In case m = 2, it is actually pla-
quettes (i j k) and (ljk) that are adjacent along (jk) .
This case is not explicitly included in Eq. (lb) because
of the constraint that a sum of inter-bond angles for
three plaquettes surrounding a carbon atom is fixed . )
The "out-of-plane" interaction, Eq . (2), involves th e
variations 3Xijk1 of the dihedral angles between cor-
responding plaquettes . (Eq. (2) can also be rewritten
without a m = 2 term . )

It is worth stressing that for the planar graphene,
Eqs . (1), (2) give the most general description of har-
monic interactions involving up to the forth neares t
neighbors. As such, it, of course, can reproduce a forc e
constants description . The latter would be derived by
expanding Eqs . (1), (2) in the atomic pair differences .
Evidently, then there would be certain relationship s
between a larger number of force constants as dic-
tated by the invariance of the potential energy with
respect to overall rotations [25] . Specifically, ten elas-
tic parameters of Eqs . (1) yield twelve force constants,
comprising eight in-plane constants of the type explic-
itly considered in [1] and four constants mixing radia l
and tangential displacements that were implicitly se t
to zero in that reference . Three elastic parameters o f
Eq. (2) yield four out-of-plane force constants [1] .

The advantage of using invariant quantities in
Eqs . (1), (2) is that the same functional form of th e
potential energy can be directly used when carbon
atom positions are (isometrically) mapped from th e
graphene plane onto the cylindrical surface of a

nanotube . Variations of the bond lengths and variou s
angles then just need to be calculated from the carbo n
atom displacements using actual positions of carbon s
on the nanotube surface . Of course, a new set of forc e
constants appropriate for the now curved geometry
could be again derived through the pair expansions .
Force constants so obtained would automatically obey
the correct relationships to satisfy the invariance with
respect to rotations .

Despite the fact that atoms of carbon nanotubes are
arranged in a 3d fashion, the excitations of nanotubes
can be described on the same footing as excitations o f
the planar graphene out of which a nanotube is rolled .
(The way we treat this somewhat more involved prob-
lem is similar to a simpler but analytically instructive
example of the relationship between vibrations of a
linear chain of atoms and vibrations of a ring of atom s
that can be found in [21].) The indexing of carbon s
on nanotubes can follow that of the parent graphen e
plane, where carbon index na consists of a 2d vecto r
n specifying the graphene unit cell and a = 1, 2 spec-
ifying one of the 2 carbons in the graphene unit cell .
The 2d invariance of the effective nanotube vibrationa l
Hamiltonian with respect to translations by graphen e
primitive vectors al and a 2 is easily restored if dis-
placements of carbons are expressed not in terms o f
common for all carbons (xyz) coordinates but in terms
of local orthogonal coordinates (uvw) : u-along th e
nanotube axis, v-perpendicular to the tube axis an d
parallel to the tube surface, and w-perpendicular t o
the tube surface . That is, depending on carbon na ac-
tual geometric position on the cylindrical surface o f
the tube, one describes its displacement by using a
local base (Una, vne, wna) . This way, obviously, the
structure of elastic interactions is seen the same for
any hexagon of the nanotube lattice . Correspondingly ,
2d wave vectors k will "know" only differences be-
tween neighboring hexagon indices n . The problem i s
thereby reduced to calculation of the usual, "graphene-
like", 6 x 6 dynamical matrix, but which naturall y
contains the correct mixing of the "in-plane" and "out-
of-plane" displacements in nanotubes . Using proper
quantization rules for the allowed phonon wavevectors
k, one can then readily derive the vibrational spectra of
nanotubes of arbitrary chirality . It is worth mentionin g
that reduction of the dynamical matrix to 6 x 6 in ou r
derivation does not require using the helical symmetr y
upfront [8,9] but rather only local displacement bases .
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The chirality of nanotubes affects results through th e
positioning of carbons and the quantization rules .

To parameterize the elastic constants K i in Eqs. (1) ,
(2) in this Letter, we use the published values of th e
force constants [1] and some experimental data fo r
graphene . We stress however that numerical calcu-
lations here serve mostly illustrative and qualitativ e
purposes . Although we could exactly reproduce re-
sults of the force constant model [1] for the graphen e
spectrum, Fig . 2(a) has been calculated with a para-
meterization of elastic constants K i such as to achieve
only a close similarity to the published spectrum [1] .
in our parameterization, we chose to slightly and
somewhat arbitrarily modify the graphene tangentia l

force constants c ' from the published [1] values so
as to satisfy 4 1) + 60; 2) + 444 3) + 14e ) = 0. The
latter equality is required by the rotational invarianc e
for both in- and out-of-plane tangential constants-
elastic energy should be zero for the overall rotatio n
of the graphene plane . Original constants [1] do no t
obey it . A recently published new set of force con-
stants [26] also does not satisfy this requirement . The
overall scaling of elastic constants was chosen here
so as to reproduce graphene experimental optical fre-
quencies of 1580 and 868 cm -I . Once the values o f
elastic constants K i have been defined for graphene ,
the same values are used to calculate spectra of nano -
tubes, examples of which are shown in Fig . 2(b)-(d) .

In displaying the nanotube spectra in Fig . 2, we
use an unconventional definition of the Brillouin zone s
(BZs) that is related to the helical symmetry of
nanotubes [27,28] . Such a BZ construction is aimed
at having BZs as wide as possible and the number
of branches in the zone as small as possible . The
transverse quantization of the 2d wave vector k o f
the parent graphene band excitations in nanotube s
requires

kC h = 2rrl,

	

(3 )

where Ch = Na l + Mae is the chiral vector [1 ]
determining the geometry of a specific nanotube .
The quantization results in the appearance of one -
dimensional sub-bands characterized by the intege r
quantum number I . The construction employed here
recognizes that there would be only do "unique "
quantization levels, where de is the greatest common
divisor of integers N and M . That is, there are only d,

Fig . 2 . Model vibrational spectra: (a) graphene; (b) (10, 10) tube ;
(c) (10, 9) tube ; (d) (16, 1) tube . See text for definition of all

independent integers l : all other allowed k-vectors ca n
be obtained with translations by graphene reciproca l
vectors . Indeed, if G = n l b 1 + n2b2 (where b t and b 2

are primitive graphene reciprocal vectors defined wit h
respect to a l and a2 and n 1 and n 2 are integers) is the
vector of the reciprocal lattice of graphene, then k i =
k + G is physically equivalent to k . In general, k an d
k l may correspond to different quantum numbers i n
Eq. (3), say 1 and I i . One derives the integer difference
of these quantum numbers as

Sl =1-11 = n1N +n2M =dc(n 1 N 1 +n2Ml ) .

The last, "irreducible", factor above can take any in-
teger values : niNt +n2M l = 0, ±1, ±2, . . ., with ap-
propriate choices for integer n 1 and n 2 . It is then clear
that the number of unique sub-bands in the extende d
BZ scheme equals precisely drone can, e .g ., choose
quantum numbers 1 = -dd/2 + 1 , . . . , 0, . . . , do/2 fo r

E 1200

c 800co
400400
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"independent" sub-band indexing, all other values o f
1 would be reducible to independent values with th e
appropriate adjustment for the one-dimensional con-
tinuous quasi-momentum kll along the quantization
lines . Many branches of the conventional [1] nar-
rower BZ would not exhibit gaps at that BZ boundary ;
they would correspondingly become single continuous
bands when properly "unfolded" in the constructio n
we use . The quantization lines within "wide" BZs can
span several hexagons of the graphene reciprocal lat-
tice [21,28] . With that definition, the BZ contains 2d,
continuous branches per each degree of freedom of a
carbon atom (factor 2 because of the two atoms in the
hexagon), that is, 6dd for vibrational excitations.

In real space this picture corresponds to the helica l
symmetry of carbon nanotubes [27,28] (we follow
our exposition in [21]) : in the parent graphene plane ,
the nanotube unit cell containing only two carbons

can be built with two primitive vectors C h /dc and T
(since hexagon positions are defined with accuracy
to Ch, it is only vector T that is needed to visit al l
hexagons of nanotubes with d~ = 1) . Different from
the conventional [1] translational vector parallel to
the tube axis, primitive vector T = Pa l + Qa2 i s
in general not parallel to the axis and characterized
by integers P and Q such as to satisfy conditio n
MP - NQ = dc . It is the projection of vector T onto
the axis that determines the "true" longitudinal perio d

all = ISdca 2/2C h

and the width 2rr/a ll of the BZ as used in Fig. 2 .
Here a is the length of the graphene primitive vec-
tors . For the reciprocal lattice vectors, defined throug h
Ki • Ch = 2n-, K2 • T = 2~r, K l • T = 0, and
K2 • Ch = 0, one readily obtains K 1 = -Qb l + Pb2 ,
K2 = (Mb l - Nb 2 )/dc . One easily finds that IK21 in -
deed coincides with 2rr/a ll •

For armchair tubes, a ll = a/2 and the BZ in
Fig . 2(b) is twice as wide as the conventional BZ, tha t
picture would be restored by simple folding . Fig . 2(b )
exhibits do = 10 "independent" transverse quantiza-
tion levels . On the other hand, Fig . 2(c) and (d) with
d~ = 1 correspond to only one transverse quantiza-
tion level, that is, to six branches . Each polarization
band/branch exhibits a continuous evolution of th e
polarization vectors with in general a strong kll depen-
dence . It is only in the vicinity of certain points wher e
a simple classification of modes can be done .

Fig. 3 . The low-frequency part of calculated nanotube vibrationa l

spectra: (a) (10, 10) tube; (b) (10,0) tube . Note that here wave

vectors kil are "reduced", that is, measured with respect to closest 1 '

points of hexagons of the reciprocal graphene lattice. The TA mode

branches are the ones with the lowest frequencies when reduced ki l
approaches zero .

In the limit of the infinitely long wavelength ,
the degenerate (because of the circular symmetry of
the cross-section of the tubular structure) TA modes
correspond to the displacements of the tube as a
whole perpendicular to the tube axis . For finite long
wavelengths, the TA modes correspond to the bending
waves of the tube as a whole. In the extended BZ
scheme of Fig . 2, the dispersion curves of these
modes can touch the zero-frequency line either a t
kp = 0 as in panel (b) or at finite k ll as in panel s
(c) and (d) . The latter finite kll points of course li e
in a hexagon of the graphene reciprocal lattice other
than the one where k ll = 0 is . To study the low-
frequency region more closely, wave vectors kll can
conveniently be reduced by measuring them alon g
the quantization lines with respect to the closest I'
points . Fig . 3 shows examples of the low-frequenc y
part of the vibrational spectra of the "popular" (10, 10 )
and (10,0) tubes reduced to a single hexagon of th e
reciprocal lattice . Panel (a) can be directly compared
to the published results [2] derived from the forc e
constant model . Apart from the small differences ,
such as values of acoustic velocities, caused by ou r
modification of the force constants, there is on e
obvious qualitative difference . The lowest-frequency
dispersion of the TA modes in Fig . 3 is clearl y
seen (and confirmed numerically) to be paraboli c
in agreement with [9] but in contrast to a linea r
dispersion found in Refs . [1-5,7] . The same pattern
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is observed for nanotubes of arbitrary chiralities. By
comparing Fig . 3(a) and (b), the parabolic dispersio n
is seen to have a smaller curvature when going t o
tubes of smaller radii R . This in fact is precisel y
what is expected from the continuum analysis of TA
vibrations [10,21], which yields the TA frequency
w(k) a k '-R for the long wavelengths kR << 1 . With
reduced k il further deviating from zero, the dispersio n
of the TA modes, of course, ceases to be parabolic .

In summary, we have described a simple empirica l
model, in which vibrations of graphene and individua l
single-wall carbon nanotubes are treated and calcu-
lated on the same footing, and which has no les s
comprehensive structure of elastic couplings as th e
force constant model [1] . Our results illustrate that ,
when a calculation procedure consistently satisfies al l
the invariance requirements, the lowest-frequency dis -
persion of the nanotube TA modes turns out to b e
parabolic, no matter how many elastic interaction s
are present in the description [9,22] . This behavior i s
related to the rotational invariance perpendicular t o
the axis of one-dimensional systems and should b e
observed when the wavelength of the TA modes i s
much larger than the transverse size of the system .
These long-wavelength TA modes correspond to bend -
ing oscillations and are generically similar to bendin g
vibrations of rods, whose low-frequency spectrum i s
well known to be parabolic [17] . Details of this part
of the spectrum can depend on details of a particula r
spatial configuration under consideration, for instanc e
the TA modes can become non-degenerate for other
shapes of the cross-section [17], but the functional de -
pendence on the wavevector should remain parabolic .
The parabolic dispersion is, e.g ., evident in calcula-
tions of the lowest flexural modes of quantum wires o f
various shapes [12,13] .

So far as the representative completeness of em-
pirical models is concerned, we note that the model
presented in this Letter has its qualitative limitations i n
describing the vibrational spectra of nanotubes . For in -
stance, it would not automatically yield the curvature -
induced softening of the phonon modes observed in a b
initio studies such as that of the twisting mode [5] o r
more complex dependencies for the breathing mod e
[5,6,29] . These effects are not deducible from the
graphene properties and therefore do not follow fro m
the isometric mapping procedure . To describe them,
an empirical model would need to include both the re -

laxation of nanotube geometries as well as an explici t
dependence of the elastic energy on nanotube radiu s
and with the axial anisotropy. We discussed such a
generalization in the context of uniform deformation s
[30] which, e .g ., leads to the chirality-dependent stiff-
ness ofnanotubes [31] . A more complete model for th e
tubes may have elastic interaction terms beyond thos e
described in graphene-based Eqs . (1), (2) . Such empir-
ical models can be developed and then parameterize d
by comparison with ab initio calculations. A more ac -
curate parameterization is, needless to say, require d
even for the present model . Such quantitative aspect s
have not been pursued in this Letter .
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Simple empirical model for vibrational spectra of single-wall carbon nanotubes

Yu.N. Gartstein
Department of Physics, The University of Texas at Dallas ,

P. O . Box 830688, F023, Richardson, Texas 7508 3

A simple empirical model and approach are introduced for calculation of the vibrational spectr a
of arbitrary single wall carbon nanotubes . Differently from the frequently used force constant s
description, the model employs only invariant quantities such as variations of lengths and angles .
All the salient qualitative features of vibrational spectra of nanotubes naturally follow from th e
vibrational Hamiltonian of graphene upon its isometric mapping onto a cylindrical surface and
without any ad hoc corrections. A qualitative difference with previous results is found in a parabolic ,
rather than a linear, long wavelength dispersion of the transverse acoustic modes of the nanotubes .
The parabolic dispersion is confirmed and elucidated in the provided continuum analysis of th e
vibrations . We also discuss and use an alternative definition of the nanotube unit cell with only
two carbons per cell that illustrates a "true" longitudinal periodicity of the nanotubes, and of th e
corresponding Brillouin zone .

PACS numbers : 61 .46 .+w, 62 .25 .+g, 62.30 .+d, 46 .40 .- f

I . INTRODUCTION surface of the nanotubes then allows to derive all fea-
tures of arbitrary nanotube spectra "naturally" , without
any curvature corrections. This way the idea of Ref . 1 o f
using the same type of vibrational Hamiltonian for bot h
graphene and nanotubes turns out to be realized with n o
need for ad hoc modifications .

We find a qualitative difference with the previousl y
published results in a parabolic, rather than a linear, dis-
persion of the transverse acoustic modes of nanotubes .
This parabolic dispersion is further illustrated in the
corresponding continuum model of vibrations and is i n
agreement with the analysis of vibrations of elastic cylin-
drical shells .' 1 The continuum model also shows the ori -
gin of another salient long wavelength feature of the nan-
otube spectra : a coupling of the longitudinal acoustic
with the breathing mode . We believe the parabolic char-
acter of the low-frequency part of the transverse mod e
dispersion is quite generic similarly to the well-known
bending waves of rods 12 with wavelengths much longe r
than the rod size . Such a parabolic dispersion was ,
e .g., calculated for the lowest flexural modes of quan-
tum wires ; 6 ' 7 recent applications of elastic cylinder mod-
els also include vibrations of cytoskeletal filaments an d
microtubules .' 3- 15 To our knowledge, the parabolic dis-
persion was not calculated previously for carbon nan-
otubes .

With our approach we can easily calculate vibrational
spectra of arbitrary (N, M) nanotubes . In doing this, we
also employ an alternative definition of the nanotube uni t
cell with only two carbons per cell as opposed to possibl y
many carbon atoms of the conventional definition .' Thi s
way a " true " longitudinal periodicity of the nanotubes i s
elucidated . The period is a projection of one of the prim-
itive vectors onto the nanotube axis, the primitive vecto r
itself being in general not parallel to the axis . The Bril-
louin zones can correspondingly be wider than usuall y
used and the total number of the vibrational branches
turns out to be just 6de, where do is the greatest com-
mon divisor of N and M .

Vibrational spectra of individual single wall carbon
nanotubes are of considerable interest and have been cal-
culated previously within different frameworks such as
an empirical force constant model, 1-3 ab initio studies 4
and tight-binding molecular dynamics .' It is known that
the higher-frequency part of the nanotube spectra is rel-
atively well represented already by the zone folding o f
the graphene spectrum . The lower-frequency part, how-
ever, has generic features owing to the one-dimensiona l
character of nanotubes . Particularly, the spectra exhibi t
four types of acoustic modes with vanishing frequencies :
one longitudinal, two transverse and one twisting . The
existence of these modes has to do with general consider-
ations - displacements of the tube as a whole along an d
perpendicular to its axis, and the rotation of the tube
about the axis do not cost energy - rather than with spe-
cific nanotube interactions . Analogous vibrations were
also discussed in the context of quantum wires as dilata-
tional, flexural and torsional modes .' These modes are
important contributors to the low-temperature quantized
thermal conductance of such phonon waveguides . 7 ' 8

The frequently used force constant model of Ref . 1 was
first developed for planar graphene based on the experi-
mental data for graphite and then adapted for nanotub e
geometries . Direct application of the graphene force con-
stant values was not found to lead to zero frequencie s
for all four modes mentioned above . To overcome thi s
difficulty, special curvature corrections were introduce d
to the force constants .' In this paper we develop another
empirical model, where the harmonic vibrational Hamil-
tonian of graphene is built using only "invariant" quan-
tities such as variations of bond lengths, interbond an d
dihedral angles . Such a description is similar in spirit t o
used in conformational analysis and stereochemistry (see,
e .g ., Ref. 9) and in bond models for vibrations in covalent
semiconductors (Ref. 10 and references therein) . Further
mapping of the graphene Hamiltonian onto a cylindrical
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For numerical computations, we will be using som e
parameterization of the model, specifically based on a
set of data from Ref. 1 as well as on some experimenta l
data . However, the numerical computations here serve
mostly illustrative and qualitative purposes .

II . VIBRATIONAL HAMILTONIAN

Despite the fact that atoms of carbon nanotubes ar e
arranged in a 3-d fashion, the excitations of nanotube s
can be described in the way very similar to excitation s
of the planar graphene . To clearly see this connectio n
for vibrational excitations, one can use local (position-
dependent) coordinate systems for atomic displacement s
and the elastic potential energy written in an "invariant "
form . This way the qualitative transformation from vi-
brational spectra of an infinite plane to spectra of curve d
cylindrical structures appear naturally without ad hoc
corrections .

Following Ref. 1, we also consider carbon-carbon elas-
tic interactions up to the fourth nearest neighbor . The
harmonic potential energy U = Ui + U. is however ex -
pressed as a function of only invariant quantities such as
variations of bond lengths and various angles . The firs t
term U; would correspond here to in-plane deformation s
of graphene and in general requires ten elastic parameters
KT' :

Ui = E [Kl (bqj + bljk ) + K2 b(p?ik + K3 blijblj k

( ijk )

+ K4bcp ijk(blij + bljk)J
4 {il}= m

+ E E [KS bl ijbl ki + Kr b&pijk b (pjki

FIG. 1 : Nomenclature of possible triangular plaquette pair s
adjacent along a nearest-neighbor carbon-carbon bond . To
guide the eye, individual adjacent plaquettes are filled wit h
lines at different angles .

(la )

m=3 (ijkl)

+ KT(4ijk blkl + b(pjklblij)J , ( lb)

while term U. would describe out-of-plane graphene dis-
tortions and needs three elastic parameters :

4 {il}= m

U

	

K'"8 2
8 Yijkl •

m=2 (ijkl)

(2 )

The structure of Eqs . (1,2) can be conveniently thought
of in terms of triangular plaquettes (ijk) formed by bond s
(ij) and (jk) connecting nearest carbons i and j, and
j and k, respectively . Variation of bond (ij) length
is denoted bli ,, and variation of the inter-bond angle
at the common carbon j denoted bcpijk . Correspond-
ingly, Eq. (la) completely describes the deformation en-
ergy of individual plaquettes . Equations (lb,2), on the
other hand, completely describe the interactions of de-
formations on neighboring plaquettes ; specifically, (ijkl)

stands for plaquettes (ijk) and (jkl) that are adjacent
along bond (jk) . There are three different ways to for m
adjacent plaquette pairs and notation {il} = m distin-
guishes them by indicating that carbons i and l are the

mth nearest neighbors (m = 2, 3, 4), as illustrated i n
Fig . 1 . (In case to = 2, it is actually plaquettes (ijk )
and (ljk) that are adjacent along (jk) . This case is not
explicitly included in Eq . (lb) because of the constrain t
that a sum of inter-bond angles for three plaquettes sur-
rounding a carbon atom is fixed.) The "out-of-plane"
interaction, Eq. (2), involves the variations 8Xijki of the
dihedral angles between corresponding plaquettes .

It is worth stressing that for the planar graphene ,
Eqs . (1,2) give the most general description of harmoni c
interactions involving up to the forth nearest neighbors .
As such, it, of course, can reproduce a force constant s
description . The latter would be derived by expandin g
Eqs . (1,2) in the atomic pair differences . Evidently, the n
there would be certain relationships between a large r
number of force constants as dictated by the invariance o f
the potential energy with respect to overall rotations . "
Specifically, ten elastic parameters of Eq. (1) yield twelve
force constants, comprising eight in-plane constants o f
the type explicitly considered in Ref. 1 and four con-
stants mixing radial and tangential displacements tha t
were implicitly set to zero in that reference . Three elas-
tic parameters of Eq. (2) yield four out-of-plane force
constants . l

The advantage of using invariant quantities in
Eqs. (1,2) is that the same functional form of the po-
tential energy can be directly used when carbon ato m
positions are (isometrically) mapped from the graphen e
plane onto the cylindrical surface of a nanotube. When
on the nanotube surface, variations of the bond lengths
and various angles just need to be calculated from th e
carbon atom displacements using the actual curved ge-
ometry . Of course, a new set of force constants appro-
priate for the now curved geometry can be again derive d
through the pair expansions . Force constants so obtained
would automatically obey the correct relationships to sat-
isfy the invariance with respect to rotations .

The standard translational invariance of the vibra-
tional Hamiltonian is preserved if displacements of car-
bons are expressed not in terms of common (xyz) co-
ordinates but in terms of local orthogonal coordinate s
(uvw) : u - along the nanotube axis, v - perpendicular
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to the tube axis and parallel to the tube surface, and w
- perpendicular to the tube surface . These simple idea s
are illustrated in more detail in Appendix A for an easie r
to follow example of the relationship between vibration s
of a linear chain of atoms and vibrations of a ring o f
atoms . For the problem at hand, we use the local dis-
placements (unci , vnci , wna) depending on carbon na ac-
tual geometric position on the cylindrical surface of th e
tube . (Here carbon index na consists of a 2-d vector n
specifying the unit cell of the parent graphene plane an d
a= 1, 2 specifying one of the 2 carbons in the graphen e
unit cell .) With local displacement bases in place, th e
invariance of the vibrational Hamiltonian with respec t
to translations by graphene primitive vectors is held o n
equal footing in graphene and nanotubes : wave vectors k
will "know" only differences between neighboring carbo n
indices na . The problem is thereby reduced to calcula-
tion of the usual, "graphene-like " , 6 x 6 dynamical ma-
trix, but which naturally contains the correct mixing o f
the "in-plane" and "out-of-plane" displacements in nan-
otubes. Using proper quantization rules for the allowe d
phonon wavevectors, one can then readily derive the vi-
brational spectra of nanotubes of arbitrary chirality .

lel to the nanotube axis . As discussed in Appendix B
(see Eq. (B7)), integers P and Q here satisfy condition
MP - NQ = 4. It is the projection of vector T onto
the axis that determines the longitudinal perio d

a ll = V5d ca2 /2Ch

	

( 4 )

and the width 27r/a ll of the BZ .
The number of branches in the BZ is related to the

transverse quantization of the 2-d wave vector k of the
parent graphene band excitations :

kCh = 2irl, (5 )

III . PRIMITIVE CELLS AND BRILLOUIN
ZONE S

The geometry of a single wall carbon nanotube is de-
termined by the chiral vector'

resulting in the appearance of one-dimensional sub-band s
characterized by the integer quantum number I . The con-
struction of the unit cell and BZ employed in this pape r
recognizes that there would be only d~ "unique" quan-
tization levels (that is, only d o independent integers l) :
all other allowed k-vectors can be obtained with trans-
lations by graphene reciprocal vectors . Many branches
of the conventional' BZ would not exhibit gaps at that
BZ boundary ; they would correspondingly become sin-
gle continuous bands when properly "unfolded" in our
construction . The quantization lines within our BZs can
span several hexagons of the graphene reciprocal lattic e
(see example of Fig . 9) .

IV. VIBRATIONAL SPECTR A

Ch = Nal + Ma2i

	

(3 )

where a l and a2 (dal l = Ia 2 1 = a) are two prim-
itive vectors of the 2-d graphene (hexagonal) crysta l
structure . Vector C h is perpendicular to the nanotub e
axis . Conventionally,' the translational vector paralle l
to the tube axis is defined, which we denote here as
TD : TD = tia l + t2a2, where t i = (2M + N)/dR ,
t 2 = -(2N + M)/dR and d R is the greatest common di -
visor of (2N + M) and (2M + N) . The resulting unit cell
of the nanotube built of Ch and T D can contain many
carbons Na = 4(N2 + M 2 + NM)/dR, and the longitu-
dinal period STD of chiral tubes be much larger than a .
The corresponding Brillouin zones (BZs) would then be
narrow and contain many excitation spectrum (whethe r
vibrational or electronic) branches .

In this paper we use an alternative picture of the uni t
cell and BZ construction that is aimed at having as smal l
number of branches in the zone as possible . As described
in more detail in Appendix B, this number of branches i s
determined by the greatest common divisor of N and M ,
denoted by de . The total number of continuous branche s
in BZ is equal to 2d, per each degree of freedom of a car-
bon atom, that is, 6d, for vibrational excitations . This
corresponds to the nanotube unit cell containing only tw o
carbons and which can, e .g ., be built with primitive vec-
tors C h/d, and T. Different from vector T D , the trans-
lational vector T = Pa l + Qa2 is in general not paral-

As was mentioned above, potential energy in Eqs . (1,2 )
is capable of reproducing results of the force constant
model' for the graphene spectrum . Figure 2 (a), how-
ever, has been calculated with a parameterization of elas-
tic constants K; in Eqs . (1,2) such as to achieve only a
close similarity to the published spectrum.' In our cal-
culations, we chose to slightly and somewhat arbitrar -
ily modify the tangential force constants

	

from th e
published' values so as to satisfy ( l) + 6442) + 4013) +
14¢, 41 = 0. The latter equality is required by the ro-
tational invariance - elastic energy should be zero fo r
the overall rotation of the graphene plane . Origina l
constants' do not obey it . A recently published new set
of force constants' also does not satisfy this require-
ment . The overall scaling of elastic constants was chose n
here so as to reproduce graphene experimental optica l
frequencies of 1580 and 868 cm- ' . Once the values of
elastic constants K= have been defined for graphene, th e
same values are used to calculate spectra of nanotubes ,
examples of which are shown in Figures 2 (b)-(d) . A s
discussed in Sec . II, we do not need the knowledge o f
force constants of Ref. 1 for curved geometries because
the Hamiltonian used automatically preserves all invari-
ance requirements .

In displaying the nanotube spectra, we use the defi-
nition of BZ as discussed in Sec . III and Appendix B .
With that definition, the BZ contains only 6d, vibra-
tional branches. For armchair tubes, a ll = a/2 and the



4

FIG . 2 : Model vibrational spectra: (a) Graphene; (b) (10,10 )
tube; (c) (10,9) tube; (d) (16,1) tube . See text for definition
of a il .

BZ in Figure 2 (b) is twice as wide as the conventional
BZ, that picture would be restored by simple folding .
Figure 2 (b) exhibits do = 10 "independent" transvers e
quantization levels . On the other hand, Figures 2 (c) an d
(d) with de = 1 correspond to only one transverse quan-
tization level, that is, to six branches . Each polarizatio n
band/branch exhibits a continuous evolution of the po-
larization vectors with in general a strong dependence .
It is worth noting that transverse acoustic modes in this
picture have their frequency vanishing at finite k li (which ,
of course, lie in a hexagon of the graphene reciprocal lat-
tice other than the one where 19 1 = 0 is) .

Figure 3 shows low-frequency parts of the vibrationa l
spectra of the (10,10) and (10,0) tubes reduced to a sin-
gle hexagon of the reciprocal lattice . Panel (a) can b e
directly compared to the published results 2 derived from
the model of Ref. 1 . Apart from the small differences ,
such as values of acoustic velocities, likely caused by ou r
modification of the force constants, there is one qualita-
tive disparity. The dispersion of the transverse acousti c
modes in Figure 3 is clearly seen to be parabolic in con -

FIG . 3 : The low-frequency part of calculated nanotube vibra -
tional spectra : (a) (10,10) tube, (b) (10,0) tube . Note that
here wave vectors k il are measured with respect to closest F
points of hexagons of the reciprocal graphene lattice .

trast to a linear dispersion discussed in Refs . 1,2,5 . The
parabolic dispersion is seen over a wider range of k it on
going to tubes of smaller radii, compare Figures 3 (a )
and (b) . In Sec . V we give an analytic confirmation o f
this observation within a framework of a continuum me-
chanics.

V. CONTINUUM ANALYSI S

Analysis of deformations and vibrations of thin-walle d
elastic cylinders goes back as far as to Rayleigh and Love ;
see, e .g ., Refs . 18-21, references therein, and Refs . 11,22
for a dedicated analysis of vibrations .

In the case of a planar, graphene, structure, the con-
tinuum potential elastic energy can be written as

Ui
= e- fdy[cl ( U + V )22

+ C2 ((uy + vx) 2 - 4uxvv)] , ( 6 )

Uo =

+ 2

	

dx dy [D I (wxx + wyy) 2

D2(w!v - wxxwvy)] . ( 7)

Here x is a coordinate that would later become along the
cylinder axis and y coordinate along the cylinder circum-
ference, p is the mass density. Displacements fields u, v
and w would become, respectively, parallel to the cylin-
der axis, parallel to its circumference, and perpendicula r
to the cylindrical surface ; x and y subindices denote th e
differentiation over corresponding coordinates . This type
of deformation energy is well known in the continuum me -
chanics of plates 12,2 ° and can be readily derived from th e
discrete form (1,2) . In the former picture, elastic con-
stants Cl , C2 , D1 and D 2 in Eqs. (6,7) are expressed in
terms of stretching and bending rigidities and Poisson' s
ratio . In the latter derivation, they would be expresse d
through constants K's in Eqs . (1,2) . Note, however, that

1600

E 1200
U

c 80 0

w 400

0
0

1600

irna,
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FIG . 4 : Branches of the vibrational spectra obtained in th e
continuum model described in the text at (a) ky = 0, (b )
ky = 1/R, (c) ky = n/R with n _> 2 . Calculations were
performed for R = 6 .78 A that one would have for the (10,10)
tube . Elastic parameters used in calculations for this Figur e
would correspond to graphene velocities cia = 24 km/s, cea =

14 km/s. Dispersion of the out-of-plane graphene vibration s
w = 6k2 was taken with 6 = 6 x 10-' m 2 /s (see Ref. 4), and
D 2 /D 1 = 4C2/Cl . Graphene results are shown by the dashed
lines for comparison . Dispersion of the graphene transverse
acoustic mode practically coincides with that of the nanotub e
twisting mode .

Eqs . (1,2) should then be transformed only in the contex t
of purely acoustic deformations, in which two carbon s
in a hexagon move " in-phase " . That is why we will b e
dealing here with the 3 x 3 matrix in Eq . (9) rather tha n
with a 6 x 6 dynamical matrix . One can develop a con-
tinuum model that would include optical "out-of-phase "
deformations as well . The deformation energy of type o f
Eqs . (6,7) was already proved to be useful in studies of
large deformations of carbon nanotubes . 2 3

The modification of Eqs . (6,7) upon formation of a
cylindrical body in continuum mechanics is, e .g ., dis-
cussed in Refs . 11,20,21 . As is also shown in Appendix
A for a discrete model, this corresponds to a simple sub-
stitution in (6,7) : v y -+ vy + w/R and ivy --* iv y - v/R,
R being the cylinder radius . Using this substitution, one
can easily study the problem of small vibrations of a con-
tinuum cylinder . The vibrational frequencies w for the
plane waves with a two-dimensional wave vector (kx, ky )
are determined from the eigenvalue equatio n

	

w 2d = Md,

	

(8 )

where displacement vector d = (u, v, w) and matrix
M(kx ,ky ) i s

	

C1ki+C2k (C l -C2 )kxky

	

iAkx/R

	

M= (Cl -C2 )kx k y C l kb+C2ki

	

-iBky/R
-iAk x /R

	

iBk y /R

	

wb +D 1 (ki +ky) 2
( 9 )

Here Cl = C,+D 1 /R2 , C2 = C2 +D2/R2 , A = 2C2 -Cl ,
B = C 1 + ( D l + D2 /2)k2 + Dl ky and wb = C1 /R 2 .

In the case of the planar structure, R - oo, Eqs. (8,9 )
lead to two acoustic waves of in-plane vibrations (with

longitudinal e ta = C," 2 and transverse eta = C2
/2 veloc-

ities) and an acoustic wave of the out-of-plane vibration s

with a parabolic spectrum w = 14 12 (k! + ky ), see Figure
4 (a) .

For a cylinder/tube of a finite radius R, the trans-
verse quantization imposes a restriction on values o f
k y = n/R, where n is an integer . Of special interest
to us here are values of k y equal to 0 and to ±1/R.
The case of ky = 0 (Fig . 4 (a)) yields two of the four
acoustic modes of the tube with vanishing frequencies :
(i) the longitudinal mode with a low-frequency disper-
sion coinciding with the longitudinal acoustic wave o f
the graphene and (ii) the twisting mode whose disper-
sion is somewhat modified from the transverse acous-
tic mode of graphene by virtue of the elastic constant

D 2 : cta =
C21"2 .

The longitudinal mode in the case
of the cylinder couples with the breathing mode, whose
frequency at kx = 0 is Wb and whose dispersion is deter -
mined by constant D 1 . As a result of this coupling, an
anti-crossing behavior of the branches arises as is clearly
seen in the Figure . (iii) The two other, degenerate ,
acoustic modes of the tube spectrum, usually referre d
to as transverse acoustic modes for carbon nanotubes l
or as flexural modes in other applications, s,13,14,22 cor-
respond to ky = ±1/R (Fig. 4 (b)) . It is apparent
from the Figure that these modes have a parabolic spec-
trum. In fact, one can easily show this analytically b y
the perturbation analysis of (8,9) in kx : contributions t o
the linear coefficient in dispersion w(kx) exactly cancel .
The low-frequency parabolic dispersion of these modes ,
although modified by the curvature rigidity, Eq. (7) ,
is mainly determined by the in-plane stretching rigid-
ity, Eq . (6) . Neglecting Eq . (7), one would obtain the
long wavelength, for k xR K 1, dispersion of this mode
as w(kx) = (2(Cl - C2 )C2 /C1) 112 kzR . Evidently, the
parabolic character of the dispersion becomes even more
apparent for smaller-radius tubes . These modes corre-
spond to bending vibrations of the tube as a whole and ,
in this sense, are similar to the bending vibrations o f
rods, whose generic long-wavelength parabolic dispersion
is well known . 12 Similarities between Figures 4 and 3 (a )
are obvious . Note, however, some quantitative differences
caused by different values of effective parameters .

VI. SUMMARY AND DISCUSSIO N

We have described a simple empirical model, in whic h
vibrations of the graphene and individual single wall car -
bon nanotubes are treated and calculated on the sam e
footing. Differently from the force constant model, our
model uses only " invariant" quantities : variations of
bond lengths, interbond and dihedral angles . As a result ,
the isometric mapping from the planar graphene onto a
cylindrical surface of nanotubes automatically preserves
all the right relationships between equivalent force con-
stants . Importantly, all calculated vibrational spectra of
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nanotubes correctly exhibit four types of acoustic exci-
tations with vanishing frequencies (one longitudinal, tw o
transverse and one twisting), which are derived naturall y
and follow from the symmetries of the underlying system .
Although the results obtained are largely similar to th e
earlier published, we have also found an important qual-
itative difference. The long-wavelength dispersion of the
transverse acoustic modes is shown to be parabolic rathe r
than linear. One consequence of this is that the vibra-
tional density of states should exhibit a one-dimensiona l
singularity near zero frequency. We cannot exclude that
there can be other physical implications of our finding ,
although this apparently is not the case for the quan-
tized ballistic thermal conductance,''' for which the ex -
act dispersion law is irrelevant . These long-wavelength
(wavelength much larger than the tube radius) transverse
modes correspond to bending oscillations of a nanotub e
as a whole and, therefore, are similar to bending vibra-
tions of rods, whose low-frequency spectrum is know n
to be parabolic . 12 The parabolic dispersion is, e .g ., evi-
dent in calculations of the lowest flexural modes of quan-
tum wires . 6 ' 7 The origin of the parabolic dependence for
nanotubes has been analytically illustrated using a con-
tinuum elastic model similar to used in the analysis o f
vibrations of cylindrical shells ." The continuum mode l
also clarified the coupling between longitudinal acousti c
and breathing modes resulting in the anti-crossing behav-
ior clearly seen in the calculated spectra of nanotubes .

The simplicity of our model allows us to easily calcu-
late vibrational spectra of nanotubes of arbitrary chiral-
ities . To better handle such spectra, we employed an
alternative definition of the nanotube unit cell with onl y
two carbons per cell . This definition reveals a "true"
longitudinal periodicity of carbon nanotubes that ca n
be substantially shorter than used in the conventiona l
definition . '

Being a result of the straightforward isometric map-
ping, the model presented in this paper, has its quali-
tative limitations . For instance, it does not automati-
cally yield the curvature-induced softening of the phono n
modes observed in ab initio studies such as that o f
the twisting mode,` or more complex dependencies fo r
the breathing mode . 4,24 Of course, these effects are not
deducible from the graphene properties . To describe
them, the model would need to include both the relax-
ation of nanotube geometries (mapping would not be
exactly isometric) as well as an explicit dependence o f
the elastic energy on nanotube radius and with the axia l
anisotropy. 27 We discussed such a generalization in th e
context of uniform deformations,25 which, e .g ., leads t o
the chirality-dependent stiffness of nanotubes . '-s We be-
lieve the present model can also be further developed i n
this regard and correspondingly parameterized by com-
parison with ab initio calculations . A more accurate pa-
rameterization is, needless to say, required even for th e
present model . Such quantitative aspects have not bee n
pursued in this paper .
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APPENDIX A : A RING EXAMPL E

Here we study in more detail a simpler illustrative ex -
ample of the relationship of vibrations of an infinite linear
atomic chain and a ring of atoms . For clarity, displace-
ments of atoms are restricted to the plane in which a ring
and chain belong. Atom-atom interactions correspon d
to formation of bonds and result both in stretching and
bending rigidity of a linear chain . Figure 5 is a pictur e
of the ring consisting of N = 10 atoms, which is assume d
to preserve the nature of interactions in the chain . The
figure shows a common system of coordinates (y, z) a s
well as local systems (v, w) related to the tangential an d
normal displacements of the corresponding atom . Obvi-
ously, the kinetic energy

= 2[ E02

	

=zn) 2
IT

	

E(vn -h v:442) ,

n

where n is the 1-d positional index of the atom along th e
ring circumference . We first write the potential energy
of a linear chain in an invariant form as

u = 2 E 812 + k2 1z E bY,2,

	

(A2 )
n

	

n

where the first term describes the stretching and second
the bending rigidity. Then we assume that the same
functional form holds for the ring . From the geometry o f

FIG. 5 : A ring of N = 10 atoms connected by interatomi c
"bonds " (thicker lines) . The stretching rigidity correspond s
to variations of the bond lengths 1, the bending rigidity to
variations of the inter-bond angles x . Number of atoms N
(or the radius of the ring) determines the angle so = 27r/N .

n
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FIG. 6 : The vibrational spectra of the linear chain (solid lines )
and of the ring (filled circles) of atoms . The parameters used
for the plot are K/M = 1 and Kb /M = 0 .1 .

Figure 5, the variation of the bond lengths, as a functio n
of the local displacements, is

51n = (vn+ 1 -vn ) cos((p/2)+(wn + 1 +wn ) sin((p/2), (A3 )

while the variation of the inter-bond angles

1 • bxn = (2wn - Wn+1 - wi _ 1) cos(cp/2 )

	

+ ( vn+1 - vn_1) sin(cp/2) .

	

(A4 )

For the linear chain (ep = 0 and vn = yn, wn = zn) ,
Eq. (A3) describes a conventional longitudinal stretchin g
while Eq. (A4) would yield a conventional local curva-
ture . Tangential and normal vibrations in a linear chai n
are fully decoupled . The corresponding two branches o f
the vibrational spectrum are simply

(.,;!(k) = (4K/M) sin e (ka/2) ,
w? ,(k) = (16Kb /Mbi) sin 4 (ka/2) ,

where a = 1 is the distance between the atoms along the
chain . This spectrum is shown in Figure 6 with solid
lines .

In the curved system (our ring with cp 0), on th e
other hand, tangential and normal displacements are
coupled, as is well known in the elasticity theory fo r
curved surfaces 12 '20 and clearly seen in Eqs . (A3,A4) . If
we were to use the common system of coordinates for dis -
placements (yn , zn), the atom contributions to the poten-
tial energy, Eq . (A2), would be position dependent an d
the translational invariance with respect to n n + 1
would be lost . With the local coordinates (vn, wn), thi s
invariance is preserved and one can directly use the con-
ventional transition to k-states, which would now be
quantized as

	

k = (2ir/Na)i,

	

i = 0, . . . N -

	

1 .

	

(A6 )

The unit cell length a > 1 here is now the distanc e
between the atoms of the ring along its circumference .
The derivation of the spectrum from the equations o f
motion follows straightforwardly from Eqs. (A1-A4),

and the results are shown in Figure 6 with fille d
circles . In accordance with Eq . (A6), it is now a se t
of discrete frequencies . The coupling between normal
and tangential displacements resulted in important
qualitative modifications of the spectrum, which have
been obtained exactly and naturally . Particularly, one
notices 3 zero-frequency modes . Two of them (with i = 1
and i = N - 1, or i = -1, in Eq. (A6) - precisely one
wavelength on the ring circumference) correspond to th e
displacements of the ring as a whole in two orthogonal
directions . The other (with i = 0) is a pure tangentia l
mode describing the rotation of the ring as a whole . The
k = 0 finite-frequency mode, on the other hand, is a pur e
normal, breathing, mode that "borrowed " its strengt h
from the parent stretching oscillations of the linear chain .

Equations (A3,A4) can be used to study the continuu m
limit, when, keeping the same radius R, we increase th e
number of atoms N -p oo and bond length l -* O. Then ,
evidently,

bl/l --r [av/ay + w/R] ,
bx/l --> -a [aw/ay - v/R] /ay .

The expressions in brackets in Eq . (A7) provide a recip e
for a transition from the continuum model of a chain to
the continuum model of a ring . The subsequent analysis
of vibrations is straightforward with the wavevector k
quantized as kR = n . (n being an integer) yielding three
zero-frequency modes and the breathing mode as in th e
discrete case above .

It should be noted here that in reality the very value s
of the unit cell length a and elastic constants K, Kb can
in fact somewhat differ for the ring and the linear chain ,
and the difference would be N-dependent as determined
by the equilibrium bond length in the ring . In this sense ,
what is compared in Figure 6 is the structure of the spec-
tra for the same values of the essential parameters upon
isometric mapping of the linear system onto a circula r
ring . In addition, the elastic energy of the ring could in
general contain terms absent in the energy of the chain ,
such as 8X nbi n . They are not deducible from the func-
tional form of the linear system and would have to b e
explored on their own . We also note that Eq. (A2) can
be generalized to include longer range interactions .

APPENDIX B : TRANSVERSE QUANTIZATIO N
AND UNIT CELL S

Two carbons connected by C h (Eq. (3)) on the
graphene plane correspond to the same carbon on th e
nanotube after wrapping . The effective 2-d cyclic condi-
tion can therefore be written as

Rnm + Ch = Rnm, Rnm = na l + ma2 ,

	

(Bl )

Rnm being the position of one of the carbons (there ar e
two of them) of an arbitrary unit cell of graphene . If k

(A5)

(A7)
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FIG. 7 : Unwrapped (3,2) tube with carbons rearranged to
form a horizontal strip here . The tube axis is shown by th e
dash-dotted line . Here do = 1 and the T vector, Eq . (B2) ,
is defined by the (P, Q) pair (2,1) . Small circles connected
by thinner lines indicate a sequence of carbons reached by
the T-translation . It is transparent that all hexagons of th e
strip would be visited this way, forming an effectively 1-d
enumeration of Eq . (B5) . The conventional vector T D =
7a 1 - 8a 2 and such a unit cell would have 38 hexagons .

is the 2-d wave vector of the band excitations, then i n
the infinite graphene plane it would have two indepen-
dent continuous components . In nanotubes, the cycli c
condition leads to the transverse quantization of Eq . (5) .
In other words, wave vectors k = kl + 14 allowed b y
Eq. (5) lie only on certain quantization lines in the recip-
rocal plane of graphene, kl being quantized accordin g
to Eq. (5) and k ll being actually a 1-d continuous wave
vector parallel to the tube axis .

Let us define vecto r

T = Pa l + Qa2 (B2 )

with integer P and Q . From Eqs . (3) and (B2), one finds

al = (-QCh + MT)/z, a2 = (PCh - NT)/0, (B3)

where

	

A= MP - NQ.

	

(B4 )

Evidently, if one can find such P and Q (of course, we are
interested in the "smallest" P and Q) for a given tube
(N, M) that 0 = ±1 in Eq. (B4), then original primi-
tive vectors a l and a2 in Eq. (B3) will be represented
through integer amounts of C h and T . Correspondingly,
an arbitrary vector Rnm , Eq. (B1), will be expressed
through integer quantities of C h and T as well . Since th e
cyclic condition defines R„m in Eq . (B1) with accuracy
to Ch , this would actually mean that the position of an y
hexagon in the unwrapped tube is determined through a
single vector T :

	

R, = iT,

	

(B5 )

where, e .g ., i = nM - in,N for A = 1 . One can think of
the corresponding unit cell built of C h and T that would
contain only 2 carbons in the cell . Of course, vecto r
T does not have to be parallel to the tube axis. The

FIG . 8 : Unwrapped (4,2) tube with carbons rearranged t o
form a horizontal strip here . The tube axis is shown by th e
dash-dotted line . Here d,: = 2 and the T vector, Eq . (B2), i s
defined by the "reduced" (P, Q) pair (1,0) . Two sequences o f
carbons resulting from T-translations are shown by thinner
lines : small circles of one sequence are connected by the soli d
line, and circles of the other by the dashed line . Translatio n
from one sequence to the other is achieved with vector Ch/2 .
All hexagons of the strip would be visited this way, formin g
effective enumeration of Eq . (B8) . The conventional vector
TD = 4a 1 - 5a 2 and such a unit cell would have 28 hexagons .

projection of T on the nanotube axis Tll = 1,13.a 2O/2Ch
- it would be directed in opposite ways for 0 = 1 vs
0 = -1 - and its modulus determines the correspondin g
longitudinal period

¢~l = Vat /2Ch ,

	

(B6 )

where Ch = IC,, . Note that vector T is different fro m
the symmetry vector defined in Ref. 1 .

It is easy to see that the picture described in the pre-
vious paragraph is indeed realized whenever d~ = 1 - we
will call it the irreducible case - where d, is the greates t
common divisor of N and M. (Considering only posi-
tive N and M does not restrict the generality.) Then ,
in fact, any integer value of 0 in Eq . (B4) can be estab-
lished with an appropriate choice of P and Q. Examples
of positive (P, Q) pairs satisfying A = 1 are listed here
as (N, M)

	

(P, Q) : (3,1) --+ (1, 0), (3, 2) -4 (2,1) ,
(5, 2) -+ (3,1), and (10,9) (9, 8) . An illustration fo r
the (3,2) tube is shown in Figure 7. A visual picture of
the irreducible case is that of a 1-d chain (of period ITO )

that is wrapped around the nanotube cylinder with a n
appropriate helix angle, as is clearly seen from Figure 7 .

"Reducible" cases - with do > 1 - can be described in a
similar but somewhat more involved fashion . One would
extract the irreducible structure factors N 1 and M 1 :

N = d,N1, M = deM1 ,

so that the greatest common divisor of N 1 and M 1 equal s
1 . Then the procedure described above for the irreducibl e
case can be applied for the geometry (N1 , M 1 ) resultin g
in the first translational vector T . In other words, inte-
gers P and Q of Eq. (B2) should satisfy conditio n

MP - NQ = dc .

	

(B7)

One however could not visit all hexagons by using onl y
so defined T . The needed second translational vector
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The latter define the quantized component of the paren t
2-d quasi-momentum k perpendicular to the tube axis :

kl = (27r/Ch)l .

	

(B10 )

FIG. 9 : An illustration of the range of variation of k ll fo r
(3,2) and (4,1) tubes . In the former case K 2 = 2b 1 - 3b 2 ,
in the latter case K 2 = b 1 - 4b2 . The corresponding range s
are shown as thick lines between the centers of hexagons o f
the reciprocal lattice of graphene . Each line crosses several
hexagons . If all inside-a-hexagon segments are displaced t o
one hexagon with a graphene reciprocal vector, they woul d
form a traditional picture of quantization lines in the first B Z
of graphene.

The continuous component kll parallel to the tube axis ,
on the other hand, would be defined within a BZ whose
width is

27r/a ll = 47rCh/i3d,a 2. (B11)
One can easily calculate that the resulted number o f
continuous bands and the width of the BZ lead to the
correct total number of states in the system, which
corresponds to 2Ch/va t hexagons per unit length of
the nanotube .

can be found as C h /d, . The resulting enumeration of all
hexagons will then read as

The conclusion that there are only de "truly unique"
quantization levels can be confirmed another way as well .
If G = n l b l + n 2b2 is the vector of the reciprocal lattice
of graphene, then k l = k + G is physically equivalent
to k . In general, k and k, may correspond to different
quantum numbers in Eq . (5), say l and 1 1 . One derives
the integer difference of these quantum numbers a s

= iT + jCh /dc, j = 0,1, . . . do - 1 . (B8 )

Index i here is, as in Eq . (B5), an arbitrary integer
that would define unique carbons while j results onl y
in d, unique translations due to the cyclic condition in
Eq. (BI) . An illustration for the (4,2) tube is shown i n
Figure 8 . A visual picture of the irreducible case is the n
of d, 1-d chains (of period HT1) that are wrapped aroun d
the nanotube cylinder with an appropriate helix angle .
The elementary unit cell contains two carbons and buil t
of vectors T and C h /d, . Longitudinal periodicity wil l
again be determined by the projection of vector T o n
the nanotube axis which is Eq . (4) becoming Eq . (B6) at
d~=1.

For the reciprocal lattice vectors, defined through K 1
Ch =27r,K2 •T=27r,K 1 T=0, andK2 •Ch=0,one
readily obtains

b1 = 1 -11 = n 1N + n 2 M = d e (n 1 N1 + n2 M,) . (B12 )

Once again, the last, "irreducible", factor in Eq . (B12 )
can take any integer values :

n 1N1 +n2 11j 1 = 0,±1,±2, . . . ,

K1 = -Qbl + Pb2, K2 = M1b1 - N1b2,

with appropriate choices for integer a l and n2 . It is then
clear that the number of unique sub-bands in the ex-
tended scheme equals precisely d e - one can, e .g ., choose
quantum numbers of Eq . (B9) for "independent " sub-
band indexing, all other values of I would be reducible
to independent values with the appropriate adjustmen t
for the one-dimensional continuous quasi-momentum k ll .

where b l and b 2 are primitive graphene reciprocal vec-
tors defined with respect to al and a 2 . One easily finds
that IK 2 1 indeed coincides with 27r/a ll . An illustratio n
for cases of (3,2) and (4,1) tubes is given in Figure 9.

This way one arrives at the band excitation pictur e
with 2d, (for each component of the wave function or
polarization) continuous bands corresponding to 2 atoms
in the unit cell and d, transverse quantization levels, e .g .
with quantum numbers

It is worth mentioning that in the (N, M) family of
nanotubes with N > M, it is the armchair and zigzag
nanotubes that have maximal number of transvers e
quantization levels de = N . The tubes immediately
next to them, (N, N - 1) and (N, 1), on the other hand ,
would have only one quantization level. The armchair
tubes have then the longitudinal period of a/2, twice as
small as is with the conventional definition .' One can
easily see it with T vector defined by the (P, Q) pair (1,0) .

1=-d,/2+1, . . .,0, . . .de/2 .

	

(B9)
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5.4 "Phonon-Polariton Physics : Thermal Conductivity ,
Phonon-Polariton Lasers and Phonon Transistors i n
Nanostructures"



"DSRC Nanoscopic Phonon Engineering Workshop "

Boor Allen Hamilton, Arlington, May 9, 2005
UT D

Phonon-Polariton Physics :

Thermal Conductivity, Phonon-Polariton Lasers
and

Phonon Transistors in Nanostructure s

Anvar Zakhidov on behalf of UTD PEOM Tea m

NanoTech Institute

University of Texas at Dalla s

Outline :

Motivation for Tuning Phonon K(T) In Our 2 Main Systems .

System 1 .

Phonon-Polaritons : New Mechanism of Thermal Conductivity
Phonon-Polariton Lasers

UT D

Overview of Phonon-Polaritonics

System 2 .

Carbon Nanotube Yarns and Sheets for Enhanced Thermal Conductivit y
Phonon Transistor with Charge Injection Gate

I



UT D Our Main Systems and Materials :

1 . New Mechanism of Phonon -
Polariton Thermal Conductivity

2 . Carbon Nanotubes with Enhanced K(T) CNT in
CNT Yarns and

Oriented CNT bucky-aerogels

UT D Our Main Concepts : "Solid State Heat Pipes "
And "Phonon Transistor or Valve "

Two types of heat pipes :

1 . We predict an analog of optical fiber for heat transfer by ligh t
mixed with optical phonon

Polariton Heat transfer

2. CNT are nanoscale analog of optical fibers in which phonon s
flow is ballistic and 1-d . Can it be a Heat-pipe

Weveguae in which Phormn•PoLuto n
popegele like light land contribute to

K(T) oflowdC organic mattes

Giant Ka) = 3000 - 6000 W/mix;
Predicted in SWCNT and Immured in
MWCNTa

e .9 e e

	

o
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01L"O
O 0 0=0-a. O a, O

0

	

0

	

~+OOO
TO - .

	

O

	

0 0 M 0 O
O

Low K o

	

Expect Nigh K
van nnlwndling

How to preserve this ballistic transport and high K in fibers
of CNTs and CNT dispersed in polymers?

A) Conjugated PolymarCN r
for diatnbuted hest nano**

m Organic Electronics
O O 0 0
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UT D Physical Ideas
for Engineering Phonons at Nanoscale fo r
Enhanced thermal conductivity K(T)

1. Optical Phonons dispersion is flat, group velocity small : no contribution to K(T)

2. It can be really engineered : changed to Phonon-Polariton with large Vg and we
found sizable contribute to thermal conductivity K(T) .

3. In Organic matter a Phonon-Laser is proposed, which can be pumped by heat an d
produce monochromatic and coherent IR

4 . In single Carbon nanotubes phonons are ballistic and Lm -1 gm, providing high
K(T) for one CNT .
Our Approach is to achieve and control high K(T) in real systems :

- unbundle tubes : decrease Phonon-Phonon scattering both inter-tube and UP
- coat tubes with polymers and mix into a matrix of low-K conjugated

polymer at concentration lower or close to percolation fo r
nano-scale distributed heat removal .

5. Phonon- I ransistor concept appeared as a result of tunable K(T )

um

	

DoD Needs Better Cooling Systems for
Electronic Warfare Chips

k.gwwcy
. . . . . .. .. . .3	 0710 10 4
	 33 350ME(2003)

. . . . . . .. . .. . .. . .. . . . . .. . . . . . . . . . . . .. . .. . . . . . .. . .

(	 uo C.nn.cM.irt
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UT D DARPA has a strong interest in Thermal Management:
Previous HERETIC Program and Phonon Engineering

Program are example s

Conventional Thermal Managemen t
H erarchy

Ba►d Level

FW n

UTD
State-of-Art Heat Removal Circuitry Targets Fluids :
Solid State Systems for cooling would be much more attractiv e
for DoD Application s

lF~
Fluidic Based Cooling Usin g

Channels

4



Impact 1 : for Heat Management Circuitr y
for DoD Applications

UT D

Goal :
Develop micro- and nano-scale solid state heat removal circuitry

with control devices (valves, couplers, switches,etc .) which can b e
Ultimately integrated with electronic and photonic circuitry .
This technology will be unique, since it will enable controllable ,
adaptable,distributed and programmable thermal managemen t

Impact :
Efficient, compact and controllable (with active feedback )

heat removal circuitry will enable design of low power, small form-facto r
DoD systems, such as radars, high performance computers, and othe r
electronic and photonic warfare subsystems

Our Concept : Solid State Cooling Circuitry Integrated on Chi p
Heat Pipes (CNTs or "Polaritonic Fibers"

UT D

CNP fiber awl
heat pipe in laminate

Novel light weight
Polymer-CNT composite
Neat exchanger

5



UT D Physical Concepts for Solid State Heat Pipes :
1. Heat Transfer by Polaritons in Organic Thin Films
2. Achieve high K(T) of Carbon Nanotubes

with engineered Phonon-phonon interactio n

Modes of Heat Transport

Photon-phonon mixed states :
Polaritons will be used
for Radiative heat transfer

Heat is transported

	

inside thin films and "optica l
by radiation

	

fibers -(ht. ) ly

Heat is transported b y
gnduetion through a

solid mediu m
Carbon nanotuhe I -d nano-heat-pipes

arranged into fibers will be explored

U T

Phonon-Polaritons Contribution to Thermal
Conductivity

Prospects for Organic Phonon-Polarito n
Heat Pipes

And Phonon-Polariton Laser

Overview of Polaritonics (MIT, France,)
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UT D Thermal conductivity

in solis :

• Known: by phonons, photons, electron s

• New : by Phonon-Polariton s

• Bulk and Thin Films (Microcavity )
• Ballistic regime: A(w) > d

• Statistical, diffusive regime A(w) << d

• Phonon-Polariton Microcavity Laser

Motivation

UT D

•Contribution of phonon-polaritons to thermal conductivity
has never been estimate d

(Klemens P.G . et al . Term . Conduct . (1988), 19, 453 )

•Phonon-polaritons can have very long mean free paths A(o)) of
mm and even cm - ballistic propagation

•Enhancement of K(T) may be expected in nanostructures
with sizes, d smaller than A(co )

In thick samples K(T) still can have contribution from polaritons

7



Phonon
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Photon

	

= PhononPolariton

of Photon with Phonon

UTD

	

What is phonon-polariton ?

Polariton is a mixed excitation, has phonon and electromagnetic compone
and can propagate with high velocity

A W

Optu al naves lave lou' V

TO Phonons

	

m

	

o=ek

LO Phonons s

+

N -po ai tr stal

	

9

WLO

WT O

u

	

POLARITONS vs PHOTON S

Photons in the Bulk , s = E .,- constant

	

Polaritons : Coherent mixtur e

A

o-ek

Density of states Vs w

Density of States :

DOS - q2 dq/(2n)3 - w2 dw

For Transverse Waves :

q2 e2/ w2 = E _

w = q

DOS becomes singular

at cnr
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uTD
Phonon-Polaritons in Bulk :

Dispersion and DO S

UT D
PHOTONS : Radiative Contributio n

to Thermal Conductivity in ballistic regime (Landauer )

2
JZ = 2i(

k
)( t~ra(k)1kgT _ )(hk))( dk

)dk sin 0 cos OdO
(2703 e

Total current J = JZ (T+AT) - JZ (T)

3

J(T) 26	 kBc	
kBT

AT

	

(2,r) 2 e:

	

he

IT+AT

	

11T 1
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Ballistic PropagationOM

g2dq sin B

	

dw

	

J(T) = 2I	 (2~) 3	 cosOhw
dg

[ii - /
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0
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kBT E~ f' x4e`
dx
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. x4ex
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J(T) 26	 kBc	 /	 kBT	
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(270 2 E m

	

hc

Phonon-Polaritons :
Contribution to Thermal Conductivity :

Resonance with Optical Phonon at w=w 1

UT D
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UT D
Major Difference : Density of State s

Resulting Enhancement
of Heat Conductance

for parameters of MgO

UT D

xis -x1
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T(K)

UT D

	

The Dependence of T-Peak Position
on the Tuning Parameter
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1 . 0
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UT D Position of the enhancement pea k
is tunable
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UT D Comparison of Polaritonic K(T) i n
SiC and MgO

BULK
8

7 -

6 -

MgO
SiC

5 -

200

	

400

	

600

	

800

	

1000

T(K)

UTD Position and intensity of th e
enhancement peak is tunable

Depends on :
•Frequency W TO

• Line width &o
•Polaritonic gap A

To get a peak at RT, we need optical phonons with wro = 1500 cm-'
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UT D Thin Films : Radiative contributio n
to thermoconductivity

2_

	

7r ) 2
I

q-=
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Film thickness
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UA

F(w) ac DOSMC X vcxoUx

0

UT D

CO,

	

W

Thin Films :
Phonon-polariton contribution

to thermal conductivity
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Thin films = Planar wavequides = Planar microcavities
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UT D Thin films : resulting enhancement of
thermal conductivity

(Again from difference in DOS )

2 0
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UT D
Relative Enhancement of Heat Conductanc e

by Polaritonic Effect in
MICROCAVITY: The ratio of G res to G nonre s
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UT D

	

Thick samples : A(co) < d
Diffusive heat transfer

The thermal conductivity K(T) can he calculated by
the using of following well-known expressio n

1
K(T) =

	

IC( )t,P)A(w)dw,

	

(4 )

where ,.; is the polariton frequency, C(w) is its therma l
capacity v(,.,;) is its the group velocity, and At .,;) is its
mean-free-path . The sum is carried out over two trans-
verse polariton polarizations p .

Phouon-IH,Ilriton in heat conductio n

V . R. l'..1, . 8 . A . A . Z klwLn-', wul V ll . ARrot.n-ich' .2 •
'Nano l.d t• .Ie k and lky.rfm..e uJ ('krmwt .r. ['.w.rafv ~f T cis, R.•~md,on. here, 11$00 e
ln .nurr .f .4pMra.nvpq, Ru . .rnn A~•ulemy .f ti".wra 140190 T,,,rnk .tlnrnu . Rrmon. R.. .. and

uim Specific Heat CO) )

1 dE
C(w

	

dT

D(w')	 ( P	 )2(A.)/kB T

V kRT2 (c P /k I T _1)2 '

E(W .T) = few
exp(ta, ;/kpT) - 1 .

where the density of states DI W) is given by

D(») _ 4,rka dk

1'

	

(2r) ; d.,•
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UT D Mean free path A(c)) o f
Phonon-Polaritons:

tim.r ttw mtetmity I u . Iw.1Mrcti.rtal to the wpm") e15.,
meal Moil we have

A(w) =
( .

2wn"

Pvitg the relation

k2 Its
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. .

	

(11 1
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)
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	 2
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UTD

	

Check of Approximation for A(co )

in MgO

FIG 2 . AFaorption tgrrtra of MgO F'.xperime,ttnI points crr_

napond to the MgO crystal at T-:DOS K with 0.16 mm thick' .
The dotted line just connects the points .

(13)
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Polaritonic K(T) in kinetic limitUT D

)

	

eT2

	

Tl

	

z

h(r)dr +

	

h(x)dr
a r 2 h`c Jo

where

h`' ll.r(T) = RT,, .rl(T) = F T , .r ll (T) X8T '

x c' ~_'(r)
hlr) _ (ex - 1)2 '(x )

Comparison of Polaritonic contributio n
with experimental K(T)

UTD
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100
Temoeralum. K

FTI : . 3 : Thermal conductivity as function of temperature .
the miner aere obtained owing the expression (16j The im . t

graph is the zoom for the region 600 K< I ' <2m 00 K

1000
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UT D
PHYSICAL REVIEW B

Promise of Fullerene M6C60 for Polaritonic K(T )

VOLUME K. NUMBER 3

0 .05

Giant ribrational resonances in A6Cs . compouels

Ke-1un Fe.. William L . Karney. Orville L Chapman. Shrou-Ma Huang. Richard B. Kano..
r .~.v.. fl"4'

	

'h, Kandy Hotcra, ' and Robert L . WhcUcn

Energy (eV )
0 .10 0.15

	

Fou optical IR mode is a great candidate for

a4

	

+

OP-Polariton with tunable K(T) .

The intensity of optical absorption increase
88 times (I) upon doping x=6 electrons in C6 0

Oscillator strength S

	

x2. increases dramatically,

h, +i-114HI4I -
c .,

450

	

750

	

1060

	

135 0
Frequency (cm- 1 )

FIG . I . Optical abeonaion swum' In the midifftared region

Polariton Gap (TO-LO splitting): A ^- S1'2 ,

So that the parameter 1l

	

X

Polaritonc Thermal conductivity K(T)

	

%,

K becomes tunable by doping level x.
K can be increased x times (6 in measured

UT D

Map of
materials
to choos e
o~andrl

Material ml (cm-1) mil (cm- 1 ) sm T1 (1/ I
11Br 48 114 5 .41 1375 \\

71a 64 161 5 .1 1 .51 6

RIM 75 103 2.62 0 .373

AgBr 81 136 4.62 0 .679

Aga 103 171 4.04 0 .66 0

K-1 103 144 2.59 0 .398

Kbr 116 168 2.34 0 .448

Nal 117 181 3 .03 0 .547

RbCI 119 178 2-14 0 .4%

Naar 135 210 2.63 0 .556 - a'=

KCI 144 216 2.16 0 .50 0

RbF 160 293 1 .93 0 .83 1

NaCl 164 262 2.31 0 .598

IiBr 173 354 3 .16 1 .046

KF 192 330 1 .85 0 .71 9

lia 204 425 2.75 1 .083

NaF 246 424 1 .72 0 .724

llF 304 660 1 .9 1.17 1
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u E
Map of
materials
to choose

co and it

Material ml (cm's) ao1l (cm' I ) s tl

Cd71 140 171 7.2 0.22 1

CdSI 171 214 - 0.25 1

7n77 177 208 7 .3 0.175

InSb 179 200 15.7 0.11 7

BaF2 184 336 2 .16 0.826

7nSI 203 252 5 .9 0.24 1

CdFr 202 380 2.4 0.88 1

C .Cl 172 210 3 .71 0.22 1

InAs 210 243 12.3 0.157

SrF2 217 387 2 .07 a 783

GaSb 225 233 14.4 0.036

CaF2 257 464 2 .05 otxn 5

CdS 234 305 - 0.303

7nS 274 349 5.2 0.274

GaP 366 402 9.1 0.098

MgO 394 719 2.956 o .x2 S

SIC 796 970 6 .52 u .2 I v

-If condensation of lowest
energy cavity phonon-polariton s
is achievable, IR lasing would

become possible wit h
zero pumping threshold .

•The life-time of phonon-
polaritons is a crucial parameter :

`lifetime > trelaxation

is neede d

Idea of IR Phonon-Lasers :
ondensation of phonon-polaritons in plana r

microcavities at Room-T
•Exciton-polariton condensatio n
has been recently demonstrate d

in semiconductor MC .
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New Concepts :
"Phonon-Polariton Laser"

1 . We propose: Phonon-Polariton laser
in the microcavity, pumped by heating

Heate r

T-3000 Bore condom.* of
Phonon-Piod®to n

Phonon-Polariton LaserUT D

• Polariton Laser - The polariton laser is a relatively new lasin g
mechanism postulated by several research groups and recentl y
observed in GaAs at cryogenic temperatures by a Japanes e
researcher visiting in the US . The laser operates on the principl e
of Bose-Einstein condensation of excitonic polaritons within
microcavities to align phase, with radiation from the condensate .
Theoretical calculations by Professor KavokinIfs group indicate
that the same opto-electronic effects will be possible in wide-
bandgap semiconductors at room temperature . Their
calculations show that the kinetic blocking of polariton
relaxation preventing formation of the B-E condensation o f
polariton phase at low temperatures should disappear at highe r
temperatures. These lasers have very low threshhold currents,
are very efficient, produce very little heat, and should hav e
applications in very low power optical communications and
optical computing .
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UT D European Activities

• New Laser Principle for Low Power and Fast Optoelectronic Devices :
Dr . Harvey, of ARL-ERO, visited Blaise Pascal University, FR, to discuss
new room temperature lasing mechanism based on Bose-Einstei n
condensation in wide-bandgap semiconductor microcavities . This opens
the door to very low power laser communications, THz optical signal
processing, quantum computing, spintronic devices, THz modulation in
photonic bandgap structures, and Tllz electronic signal processing . Such
devices will enable the communication and processing of the massive
amounts of data necessary to support FCS concepts . The Physics Dept at,
Blaise Pascal University, has a very strong theoretical program and a good
experimental program which is focusing on electron-light interactions in
semiconductors, in particular excitonic polariton effects in semiconducto r
microcavities. Professor Kavokin leads a European collaboration funded
by the European Community and focused on phenomena in semiconducto r
microcavities under the EC Framework program on "High Technology for
Communications and Information Processing" .

UT D Polariton Transisto r

• THz Excitonic Polariton Transistor and TH z
Optoelectronic Devices - The Blaise Pascal group
has shown theoretically and experimentally that th e
excitonic polaritons can be accelerated in the plane o f
microcavities, with the gradient of the microcavit y
thickness acting as the forcing function . Observed
velocities are one to two orders of magnitude faste r
than the electronic ballistic transport in bul k
semiconductors, with the potential for using th e
polaritons as carriers in a very fast transistor typ e
device and for ultrafast optical processing .

23



Polaritonics : bridging the gap betwee n

electronics and photonic s

• Between electronics and photonics there exists a frequenc y
gap of approximately 2 octaves, i .e . the frequency range
between 100-GHz and 10-THz. Here we demonstrate that
phonon-polaritons in ferroelectric crystals like LiNbO$_3$
or LiTaO$_3$ may be able to bridge this gap . The ability to
fabricate structures within the crystal by femtosecond lase r
machining facilitates all integrated signal guiding and
processing . Spatiotemporal imaging is employed for direc t
visualization of the electromagnetic field within the crystal .
Polaritonic resonators, waveguides, photonic crystals an d
focusing, dispersive, and diffractive elements will be
demonstrated .

• Authors : David Ward, Thomas Feurer, Eric Stats, Joushua
Vaughan, Keith Nelson, Massachusetts Institute of
Technology )

UT D

Conclusions on K(T) by Phonon-PolaritonsUT D
1. Ph-Polaritons are found to contribute to K(T) of thin films, with T-peak .

Position of T-peak depends on i~ op, the line width of OP and the TO-LO splitting,

2. K(T) can be 10-20 times stronger than the conventional radiative contribution to K by free photons .

3. T-peak shifts to lowest Tin microcavities (L 1-10 µm), which can be used in cryogenic heat transfer .

4. To create a material with high enough polaritonic K(T) at RT, compared to the usual, phonon Kph
one should create an organic material µ ith OP at 1500-2000 cm- l , which has large oscillator strength
In organic materials Kph is usually low (< 0.1-1 W/mK), the Kpol can become a main contribution.

5. One candidate for polaritonic heat pipe, can be a doped fullerene film MYC< in which a giant
oscillator strength S enhancement is found, which is quadratic in doping level x : S .- x2 .

6.The strong dependence of Kpol(T) on S(x) leads to tunability of KIT) by charge transfer

and thus may be used in "polariton-transistors", in which K can be amplified by charging gate G .

7. Phonon-Polaritons can be used for "Polariton-lasers", which will emit monochromati c
and coherent IR radiation, due to Bose-Einstein condensation in microcavity .
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Our Main Systems and Materials :UT D

1 . New Mechanism of Phonon-Polariton Therma l

Conductivity

2 . Carbon Nanotube Systems with
Enhanced K(T) CNT :

- CNT Fibers and Yarns and
- Oriented CNT-ribbon aerogel s

PHONON TRANSISTOR i n

NANOTUBE FIBERS with Electrochemical Gat e
uT D

Capacitance of 134 F/gm, versus usual 15-30 F/gm .
BsWoly e: 1 .0 M tetrat ylanrrnrrurn hexafluorophosphate in acetonitrile.

Debuildling should decrease tube-tube phonon '°m

scattering, and increase K(T) dramatically :

	

\lc,.
Phonon Transistor-'--

Increased capacitance results from debundling .
(Raman measurements of radial breathing mode shifts .)

O O O-'i

	

o

50 ,m 150 30 30 am

0
0

O -̀ ' O
q -O O 0 0

-► O 3- O
n3 00 (3~o 0

O `-- o
aped High K upon ®buffing
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UT D

	

Prove of Unbundling: Twice Increased Diameter of Fibers

SEM images of Purifie d
Unannealed Oleum -spu n

HiPCo fibers
Phonon Transistor in'OFI " v

Before cycling in EMIIm

	

After cycling in EMII m
Fiber diameter A 50 gm

	

Fiber diameter A100 g m

UT D

	

Phonon Transistor with
Electrochemical Charge Injection Gat e

Gate function :

C= charge/voltage
C= Area x dielectric constant /d

Area/weight is above 300 m2/gm;
d is in nanometers

Modulation of Thermal Conductivity K(T )

Charge injection will cause change
in tube-tube interaction, which change s
12 of intertube phonon and modulate
The Tube-Tube scattering.
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UT D Charging Setup :

• SWNT paper was used to charge and study the effect of charge injection in fiel d
emission characteristics . SWNT paper was was used as both the positive and negativ e
electrode .

• Chronopotentiometry was used for performing the double layer charging . Princeton
model 273A instrument contains both a potentiostat and a galvanostat, and hence ca n
perform both controlled potential (potentiostatic) and controlled current (galvanostatic )
experiments .

• Cyclic Voltametry was also performed before the charging by cycling from -0 .2 to
0 .9V . The direction of the potential is reversed at the end of the first scan. This has th e
advantage that the product of the electron transfer reaction that occurred in the forwar d
scan can be probed again in the reverse scan . It is a powerful tool for the
determination of formal redox potentials, detection of chemical reactions that preced e
or follow the electrochemical reaction and evaluation of electron transfer kinetics .

UT D Charging I-t Curves

>m m ID

	

O 0, Y m m !W Im IC IS 1 0

~1 ~• V

Capacitance of SWCNT paper is very large : C - 20-30 Fig
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u1M Tuning K by Charge Injection
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3 .0

Distance, mm

Thermal diffusivity and thus thermal
Conductivity of CNT is prove d
to be tuned by Charge injection into

Oriented CNT paper at V = 0 .5 V

Effect is 25 °o :

From D = 15.2 mm2/s to 21 .6 mm2/s

UT D Tuning K by Charge Injection :
A Step towards Phonon Transistor

Two MasAlisn sWMYII) ;maw decoder caned at 05V for lb
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raw and Twist of yarns from MWNT fores

Fig 2a
Flg1

Fig 2b

Flg 1

Fig . S2 . SEM ii i giatdls shooing the strustures finned during the draw-twist process. The

relationships between the SF.M micrographs of Fig . I and Fig . 2A are shown, as well as a higher

magnification image of the paniaiiy bundled MWbTs being pulled from the forest wall. The

.draw twist process was intcrrupted . and the sample was transferred to a SEM for recording theseIM

images.

High Thermal Diffusivity of
Single CNT Yarn : Better
than C u

1220 mm 21s

219 ,

o 80 Hz
• 4014
• 20112

Thorn-al diffusivity of carbon ranotube yam, d=11 .31a n
45

40

-5
o .o 0.60 .50 .1 02

	

0 .3

	

0 .4

Distance, mm
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UT D

	

Thermal conductivity o f
Single CNT Yarn : Better than C u

• The thermal conductivity ? of single-strand MWNT yam was obtained a t
room temperature from the relationship A= pCpD , by measuring the
thermal diffusivity D, density p, and specific heat capacity Cp . The
measurements of D were carried out using the laser flash technique .

• One end of a specimen of length L is uniformly irradiated by a laser bea m
Q=Qosin oz .

• A= pCpD = 0.8 g/cm3 - 0 .71 5 J/gK • 2.20 cm2/s =
• 1 .25 W/cm • K = 125 W/m •K,

• where the specific heat capacity of graphite with density 2 .26 g/cm2 :
Cp(300K) = 8 .58 J/(mol K) = 0.715 J/gK [1], (For comparison the specifi c
heat capacity value for 10 pm Amoco P-55 carbon fibers, with density of 2
g/cm2 at 25oC is 0 .717 J/gK [2]), p=0.8 g/cm3 is the density of fiber, and
D=2.20 cm2/s is the thermal diffusivity of the fiber.

• For comparison, the thermal diffusivity of thin wire (100µm) of copper and
gold are much lower : Dcopper = 117 mm2/s, Dgold = 130 mm2/s .

Draw-Twist' process to convert MWN T

	 in a forest to `Twisted Yams '

Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technolog y
M. Mang, Ken Atkinson, Ray Baughman, Science 306 (2004) 135 8

I tg . ti I . Photograph taken during interruption of the drag -tit i .t process used to ccmvert MWNTs i

In a lorest to a ttsistcd \IWNT yam . The overlapping image . of both the nanotubc hedge and

yam arc a result of reflection in the silicon substrate .

30



EEO SEM images of `Twisted Yarns '
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U T D Oriented Multiwall CNT Thin Sheets :
Aerogels with strongly anisotropic K(T)
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Spun nanotube sheets a s
an incandescent light source .

The light output is polarized, with a degree of polarization that increases with
wave length from 0 .6 at 500 nm to 0 .66 at 780 nm .

NanoTech Institute MWNT
Sheet Fabrication Process

Sheets (presently 5 cm X 1 m) are fabricate d
At 3 m/minute. These width and length are
not fundamentally limited and the rate i s
limited by our present draw apparatus .

We have promising initial results for diverse
applications :
* transparent elastomeric electrodes ;
* light-emitting diodes;
* incandescent sources of polarized light ;
* two-dimensionally reinforced composites ; &
microwave absorbing appliques
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5.0 10 ' -

Polarized Emission of
Nanotube Shee t
Incandescent Light Source

1eyar ribbon

U -50V
-1 1 ' measurement
- 2'' measurement

NV' measurement
-- N 2 " noarenerl

b)

500

	

eo0

	

700

Waveie glh (rrn)

	

Y veletp (

	

)

Spectral radiance of incandescent light from single sheet of paralle l
carbon nanotubes : a) linear scale, b) semi logarithmic scale .
The solid line in a) is a fit by black body radiation with T=1350 K .

UTD Optical Transparency of
MWNT Sheet

Polarizer Alignment :

Perpendicular

Parallel

600

	

1000

	

1400

	

1800

	

220 0

Wavelength (nm)

Resistance : -600 Q/q (in aligned direction )
-15 KII/o (in cross direction)
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5.5 "Phonon and Thermal Transport in Carbon Nanotub e
Systems"



Phonons and Thermal Transport i n
Carbon Nanotube Systems

An informal review

Yuri Gartstei n
Department of Physics

The University of Texas at Dallas

DARPA DSRC Nanoscopic Phono n
Engineering Worksho p

May 9, 2005

"What's the buzz?" - Great Promise :

`Due to the combination of a high speed of sound, hard optical vibratio n
modes and a large phonon mean free path, carbon nanotubes prove to b e
the most efficient thermal conductors.° (D. Tomanek, 2005)

'The stiff sp 3 bonds, resulting in a hig h
speed of sound, make monocrystalline
diamond one of the best therma l
conductors. An unusually high therma l
conductance should also be expected in
carbon nanotubes,which are held togethe r
by even stronger sp2 bonds . . .

:00
TI M

In MD simulations of Tomanek's group
(2000), the peak therm . cond. of (10,10)
SWNT found to be 37000 lMm•K, on pa r
with the highest value ever observed in a
solid (diamond) .

	

RT value of 6600
W/m-K is also very high . . .

The rigidity of nanotubes, combined with a
virtual absence of atomic defects or
coupling to soft phonon modes of th e
embedding medium, should make these
systems very good candidates for efficien t
thermal conductors" .
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But can we measure and utilize it ?

• "The expected high thermal conductivity value in nanotubes makes its direct
experimental observation very difficult . Since thermal transport is likely to be
dominated by phonon scattering in the contact region, the most importan t
and currently unsolved challenge is to reproducibly create and characteriz e
thermal contacts to a nanotube . Even if thermal scattering in the contact
region could be minimized, the net thermal transport would still be limited b y
that of the leads" . (D. Tomanek, 2005)

• "Interlayer interactions quench the thermal conductivity . . . by nearly 1 orde r
of magnitude . We should expect a similar reduction of the thermal
conductivity when . . . nanotubes form a bundle or rope, become nested i n
multiwall nanotubes, or interact with other nanotubes in the "nanotube mat"
of "bucky paper" . (Berber, Kwon and Tomanek, 2000)

In fact, even experimental data are relatively scarc e

Some "standard" references

1 .4

1 .2

0.2

0
0

Thermal conductivity of mats o f
crystalline ropes of SWNTs . RT
value of K deduced - 35 W/m-K.
(Hone et al, 1999) . Analysis
suggests that phonons dominate
thermal transport .

3

Single-walled
C' arhnn Nannhlhm ,

100

	

150

	

200

	

250

	

300

	

350

Temp (K)
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Experimental Data continued : Morphology and Ordering Matter

11-alili.Krl swlvr	
-

'

Aksaell

Us.o11od 0 8

:>n

200

10

0 X WO W 200 270 100 301 co
TI C

Thermal conductivity of the 'thick"
annealed sample of aligned SWNT,
measured in the parallel direction. At
300 K, K is much higher than in
unaligned material, and is within a n
order of magnitude of graphite o r
diamond. (Hone et al, 2000)

Crossover suggests 1-d quantization is
indeed up to higher T for smalle r
diameters (Llaguno et al, 2002)

Morphology Effects (Defects) can be Improved also by additiona l
processing

1 .8
2 k (0k11 nwU

1 .8
11-aligned
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40
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IIK I

0.8 	 1
10040
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I'1K 1

Anneanling helps by eliminating
impurities and healing defects (Uagun o
et al, 2002)
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Experimental Data : Multiwall Nanotubes

MWNT films (Yang et a!, 2002) -
noncontact measurements

Bundles

80 nm

200n m

Tai .1../I

Al

	

P .
J: r

K 20 W/m-K deduced independent o f
tube length . "Taking the volume-fillin g
fraction of CNT's into account, the
effective thermal conductivity for th e
MWNT's is about 200 W/m K" .

Overall sentiment on experimental situation seems to be
that room-temperature values of K vary from units and
tens of W/mK to a couple of hundred of W/m-K fo r
various arrays, the results ordinarily improving with th e
decrease of the bundle size. A record result of 3000
W/mK relates to individual MWNT .

Can this record result have to do with a higher density o f
layers of the "material" of the sample accompanied by
the absence of the need of entangled 3-d heat transfer ?

Also, K

	

seems to be an increasing function of
temperature up to about room temperatures.

• Now, what about our understanding of phonons in NT s
and the thermal transport?

Imyenture iK 1

Individual suspended MWNT
(d=14 nm) per Kim, Shi,
Majumdar, and McEuen (2001) .
Maximum much
larger than 20 W/m-K reported
for mats (Yi et a!, 1999).
Bundling deteriorates K .
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Model vibrational spectra shown using spiral symmetr y

( :riiplleiie

	

(11) .1(1)

Vibrational spectra of individua l
SWNTs are basically wel l
understood :

High-frequency part of the spectru m
is well represented by zone-folding of
the graphene spectrum .

Low-frequency part reflects generi c
1-d features common with vibration s
of elastic cylinders .

Lq

Low-frequency part of the spectrum

0.4

features 4 gapless acoustic modes :
longitudinal and twisting with linear

dispersion to - k and degenerate bending
with parabolic dispersion to - k2 as well as
higher energy modes with quantized gaps .

0.1 01 0 3

k (VA)

In the `older" picture (however
being sometimes used even now)
bending (transverse) modes were

believed to have o - k.
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Intertube Phonon Coupling and Dimensional Crossover s

Experimental data of Hone et al (2000) on specific
heat in SWNT ropes suggests that intertube phono n
coupling is weak .

T Io

• Isolated tube phonons cross over from a 1 D regim e
where only acoustic subbands are occupied to a 2 D
regime as higher (optic) subbands are populated .

	

t o

• In a bundle of weakly coupled tubes, phonons are 3D a t
very low temperature, then crossing over to a 1D regime .
• If the coupling were strong, the 1D regime would be
bypassed and a quantized 1-d phonon spectrum would not
be observed .

More accurate analysis of specific heat by Popov (2002) does not seem to
contradict the conclusion of weak intertube phonon coupling
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More simulations of thermal conductivity of SWNT s

MD simulations of Osman and Srivastava
(2001) also (comp. to Tomanek's) revea l
a maximum of K but of differen t
magnitude and at higher T, and indicate a
dependence on tube radius

,wwnew 00

MD simulations of Grujicic, Cao and Roy (2005 )

I -
graphene

layer

(10,10)

7.m

,.m

(10,0) - ., yR .

(5,5)

,e0 700 WO 000 7m em
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iN60e°e°o $

EP:Pc0 o0o
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X000 ofS
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,70

b

Results are closer to Tomanek's
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Despite the variations, MD results show a similar pattern well know n

larger crystal

	

in the theory of solids

"Between the Umklapp region and th e
boundary scattering region . . . the
conductivity maximum, whose appearance
is perhaps one of the most strikin g
predictions of the quantum theory of solids" .
(J. Ziman, 1960)

Qualitatively, K - Crod

At high T, it is phonon-phonon interactions (umktapp scattering) that reduc e
mean-free path I.
At low T, umktap processes are not efficient and mean-free path is overtake n
by the sample size L. T -dependence is largely that of heat capacity C .

But what is it that plays the role of L in MD simulations, where sample size s
are at best hundreds of angstroms with or without periodic boundaries ?
Estimates for mean free paths are normally given as fractions or comparabl e
to a micron . Moreover, one can make simple but fundamental estimates . . .

Conductance and Conductivity

Conductance G ofa "sample": Heat current J = -G - A T

Conductivity x of a "material": Heat current density j = -x

A- =G- ; Length L,cross-section S

• Additional scatter in reported results is due to various choices of S

Low-T Ballistic Conductance Quantizatio n

(Rego and Kirczenow, 1998)

In the absence of phonon interactions (ballistic) and for ideal contacts, each
acoustic mode in the limit of low T brings quantized contribution to the conductanc e

G, = 3h T=9 .456 . 10 -13 (W/K ' )-T; G =

In general, ballistic conductance

kB T
G =

	

r

	

x'e`

	

Z _ 1I
0

h

	

(e` -1) ''

	

k 8 T
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Ballistic conductivity results : A likely upper limi t

Trying to rationalize MD results ,
consistency check . . . :

Knowing vibrational spectrum, it i s
very easy to calculate ballisti c
conductance, no other scattering but
the boundary one . Here ball . cond .
is shown translated into K for a
(10,10) tube, give or take for the
accuracy of the spectrum .

;20
. . .

10'0

	

202

	

.700
IC' PO'C2CC. K

Length used is L=1 micron and
cross-section S=250 angstrom2 .

To get, e .g ., Tomanek's result at
T=100 K, the length would need to
be increased by a factor of - 80 . So
what is the meaning of the effective
lengths appearing in those M D
calculations?

Interesting comments on the convergence of MD results upo n

the increase of the simulation sample size

(sr,
110 .10

) 115,15! . -

r- -

t
1 _ : l

SCIC,
ex1C7

3x1C7
F "

5 2x1C'

IxOC7
8x1C`

600‘
SCLC'

on

(1a1o)

	

(•)

1o0
.n..raA w e.NNI .CS. wwr

200

	

400 603 100 0
L (A)

. . despite the fact that th e
phonon mean free path is
considerably larger than the sizes
of the computational cells used ,
an apparent convergence in the
thermal conductivity can be
obtained". (Grujicic et al, 2005)

"We find that the low-frequency
vibrational modes of the lattice
are limited by the size of
simulation domain, and th e
thermal conductance of an infinite
long CNT may be infinite" . (Yao et
al, 2005)
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Intertube Phonon Coupling and Thermal Conductivit y
Not that much has been done . . .

Berber of al (2000) base thei r
conjecture on the analysis of the
interlayer effect for graphite :
'Very interesting is the fact that onc e
graphene layers are stacked in graphite ,
the interlayer interactions quench the
thermal conductivity of this system by
nearly 1 order of magnitude . . . We should
expect a similar reduction of the thermal
conductivity when a nanotube is brough t
into contact with other systems' .

Che, Cagin and Goddard (2000) : We also carried out the thermal conductivit y
calculation for (10, 10) nanotube bundles in close packing condition . The simulations
show that the nanotube bundle has very high thermal conductivity along the tube axis ,
9 .5 W/cmrIK [T=300 K], which is comparable to simulated graphite in-plane thermal
conductivity, 10 W/cmlK .'

Thermal Conductivity Enhancement in Composites
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"In-House" (UTD Nano-Tech) Measurement s

(courtesy of Dr. A . Alley)

2 0

l e

Y 1 0

3
E

1 4
1 2

t o

, 0 6

15 0
4

g 0 2

00 0

iu_x .caK~r,ISa4a3ry

oN~sr~Fx ~.
11..4 m

. . ; ~
a~,az wno•c

	

_

Substantial enhancement i n
nearly uniform mixtures of
SWNTs in polycarbonate
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Much more modest effect fo r
mixtures in conjugated polyme r
MEH-PPV (attributed to
agglomeration of SWNTs) .
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Effective Medium Analysis for Composite s
(Nan et al, 2003, 2004)

Some exp . data can be
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and K m =0 .4 Wm-K )e
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Thermal Interface Resistance between SWNT and octane liqui d
(Cahill and Keblinsid's groups, 2003, 2004)
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Exponential decay of a
pulsed temperature
difference leading to a
close

	

estimate

	

fo r
interface resistance.

Steady state flow between
NT and a sink - local T vs
distance from NT .

Dramatic temperature
gradient at the interface - the
largest thermal resistance is
with the nanotube-liquid
interface estimated to be --
3-10$ m2K/W for NT -- 4 nm
long and d=0 .7 nm. With
liquid K - 0 .1 W/m-K, the
interface resistance i s
equivalent to having NT
surrounded by - 5 nm thick
extra layer of octane !
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Vibrational Mode Analysis of Interface Resistance

N/ -

/p

a.
Y a/

'" 106 1

	

T,

1

f>• ,
I

	

1

	

!

	

.

	

3

	

e

	

7
W n re\umber It

Decrease of the interface resistance with the N T
y_. .s--o"'

	

length led to conjecture that it is coupling of low-
frequency bending modes of NT to low-
frequency octane vibr . modes that provides heat
flow - all interactions being driven by dispersion
forces (octane-octane and octane-NT) .

Spectral temperature analysis confirms .

Spectral temperature of nanotube
bending modes as a function of mod e
number . The lowest frequency mode
has nearly the same temperature as th e
surrounding fluid while the hig h
frequency modes have temperatures
close to the average temperature of the
nanotube .

Shenoqin's at al (2004)scenario:
1. The heat energy first flows from the

high frequency modes to the low
frequency transverse vibration modes
(controlled by the intrinsic phonon-
phonon scattering in the tube )

2. It then transfers to the layer of octan e
liquid adjacent to the nanotube
(controlled by the coupling betwee n
soft modes in the tube and in th e
liquid)
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Can Interface Resistance be Decreased by Increasing Coupling t o
the Matrix? - Yes but only by so much (Shenogin et a! 2004)

Chemical functionalization - introducing chemica l
bonds between molecules of matrix (octane) an d
carbon atoms of nanotube :

to
Fodxo

oowt

(5 .5)

1. Interface resistance IS decreased . . . but

2. Defects formed on NT decrease its own K

Net result : A limited improvement by a factor of 2
fora range of aspect ratios 1
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Concluding Remark s

' Modest. applications of nanotubes for thermal management (like 100-
200% increase for composites with low conductivity matrices) look quite
feasible .

However, in order to evaluate prospects of more aggressive goals fully
exploiting the claimed potential, much more research work is needed to
provide a firm understanding of issues involved . Among the problems
could be :

• Details of the physics of individual tube behavior, especially the low-T
regime

• Microscopic picture of intertube/interlayer interactions and scattering

• Microscopic study of contacts with various media (leads )

• Possibility of (self-) assembly of contacts and environments that woul d
be beneficial to the therm . conductivity

• Optimization issues given the understanding achieved
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